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Abstract
In public school choice, students with strict preferences are assigned to schools.

Schools are endowed with priorities over students. Incorporating different constraints
from applications, priorities are often modeled as choice functions over sets of stu-
dents. It has been argued that the most desirable criterion for an assignment is
fairness; there should not be a student having justified envy in the following way: he
prefers some school to his assigned school and has higher priority than some student
who got into that school. Justified envy could cause court cases. We propose the
following fairness notion for a set of assignments: a set of assignments is legal if
and only if any assignment outside the set has justified envy with some assignment
in the set and no two assignments inside the set block each other via justified envy.
We show that under very basic conditions on priorities, there always exists a unique
legal set of assignments, and that this set has a structure common to the set of fair
assignments: (i) it is a lattice and (ii) it satisfies the rural hospitals theorem. The
student-optimal legal assignment is efficient and provides a solution for the conflict
between fairness and efficiency.
JEL C78, D61, D78, I20.

1 Introduction

Centralized admissions procedures are now being used in a wide range of applications rang-
ing from national college admissions, assigning students to public schools, and implement-
ing auxiliary programs such as magnet schools.1 There has been a great deal of research
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1Examples of countries that use a centralized college admissions process are Turkey (Balinski and

Sönmez, 1999); China (Chen and Kesten, 2016); and India (Aygün and Turhan, 2016). There is now a
long literature devoted to public school assignment beginning with the seminal work of Abdulkadiroğlu and
Sönmez (2003). See Pathak (2011) and Abdulkadiroğlu and Sönmez (2013) for surveys of the literature.
See Dur, Hammond, and Morrill (2018) for a discussion of centralized magnet school assignment.
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focusing on the tradeoffs between efficiency, fairness, and strategic properties of candidate
mechanisms. These mechanisms have received much attention in the economics literature
precisely because for parents and students school choice is an important issue. Assigning
objects which are valuable and yet scarce leads to contention, and contention leads to law-
suits. For example, parent groups in Seattle and Louisville filed lawsuits contesting the
use of racial status in the tiebreaker of their school district’s assignment procedure. These
lawsuits eventually led to the Supreme Court ruling (in Parents Involved in Community
Schools v. Seattle School District No. 1, 551 U.S. 701, 2007) that race cannot be used
explicitly in a school assignment procedure.

This is our basic question: which school assignments are legal? One of the reasons the
New Orleans Recovery School District recently changed its assignment method was the
threat of lawsuits (Abdulkadiroğlu et al., 2017). Under the previous method, a student
could be rejected from a school while a student with lower priority was accepted. The
Louisiana Department of Education determined that these “blocking pairs” potentially
violated state law, and consequently, were illegal. However, there are two reasons why (at
least in the United States) legality is more complicated than determining whether or not
there exist blocking pairs.

Legal standing, or locus standi, is the capacity to bring suit in court. As interpreted
by the United States Supreme Court:

Under modern standing law, a private plaintiff seeking to bring suit in federal
court must demonstrate that he has suffered “injury in fact,” that the injury is
“fairly traceable” to the actions of the defendant, and that injury will “likely be
redressed by a favorable decision.” 2

Therefore, it is not illegal to reject a student from a school (regardless of which students are
accepted) unless there exists a legal way of assigning her to the school. This suggests that
legality is a set-wise property of assignments. For determining whether a set of assignments
is legal or not we must understand which assignments are possible (and which not).

The second reason why a simple comparison of students’ scores is not sufficient to de-
termine the legality of an assignment is that typically a school’s decision on which students
to admit is at least partially based on the composition of the student body, like in school
choice with control constraints (Ehlers et al., 2014). Public schools often reserve seats
for minority students or students who live within a “walk-zone”.3 Admission to a magnet
school may incorporate a student’s income level (Dur, Hammond and Morrill, 2018). The
centralized admissions process in India incorporates the caste to which the student be-
longs to (Aygün and Turhan, 2016). In Japan the assignment of doctors to hospitals takes
regional quotas into consideration (Kamada and Kojima, 2015, 2018). In each case, admis-
sion decisions are based on a more complicated choice function than a simple rank-order

2This quote is from Hessick (2007) regarding Supreme Court case Lujan vs. Defenders of Wildlife, 504
U.S. 555, 560-61 (1992).

3For examples, see Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu et al. (2005), Kominers and
Sönmez (2016), and Dur et al. (2017).
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list of students. Is it still possible to determine which assignments are legal in a coherent
way?

A generalized choice function is just a more complicated set of rules for determining
which students are admitted. We interpret these rules as conveying rights to each student.
A student’s rights have been violated if the rules dictate that she should have been chosen.
However, whether or not this violation is illegal is more subtle; although the student has
been harmed, this violation is not illegal unless the harm is redressable.4 We propose a
definition of legality incorporating these two constraints. This is analogous to a “fairness”
notion of a set of assignments (where fairness depends on the whole set). More specifically,
blocking is only allowed via assignments in the set (which we deem legal). Any assign-
ment outside the set is illegal because it is blocked by some assignment in the set. The
important feature is that here blocking is defined in terms of assignments: student i blocks
an assignment if i blocks it with some school and there exists some assignment in the set
where i is assigned to the blocking school. It should be clear that in this assignment the
school is not necessarily better off. It has the interpretation that there is some “legal way”
of assigning i to the blocking school. More precisely, we call a set of assignments legal iff
(i) any assignment not in the set is blocked by some student with an assignment in the set
and (ii) no two assignments block each other.

Legality is related to stable sets à la von Neumann Morgenstern (vNM). A cursory
reading makes one think that the two concepts are identical. They are in the sense of
the formulation of (i) and (ii), but most importantly, a school might be worse off under
the assignment in the set when compared to the original one. But this is irrelevant as we
are here in the context of public school choice where (as it has been argued) students are
“active agents” and schools are “objects to be consumed”. Any legal set is a vNM-stable
set where schools are “objects to be consumed”. Von Neumann and Morgenstern (1944)
believed that stable sets should be the main solution concept for cooperative games in
economic environments.

Our main results show that there always exists a unique legal set of assignments and
that this set shares the following properties with stable assignments: (i) it is a lattice and
(ii) the rural hospitals theorem is satisfied. Therefore, there always exists a student-optimal
legal assignment and a school-optimal legal assignment. Moreover, we demonstrate that
the student-optimal legal assignment is (Pareto) efficient. Unlike for fairness and efficiency,
there is no tension between legality (vNM-stability) and efficiency. Considering first legal-
ity and second efficiency or first efficiency and second legality yields the student-optimal
legal assignment. This is in contrast to traditional school choice where when stability is
more important than efficiency, the DA (deferred-acceptance) assignment was suggested,
and considering first efficiency and second fairness, the TTC (top-trading cycles) assign-
ment was suggested. Finally, we relate the student-optimal legal assignment to Kesten’s
efficiency adjusted deferred-acceptance (DA)-mechanism (Kesten, 2010). The efficiency

4It is common, especially among economists, to view all harm as redressable via side payments. However,
states and by extension local governments have sovereign immunity from lawsuits for damages unless the
state consents to be sued.
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adjusted DA-mechanism has not been previously defined when schools have general choice
functions. Most importantly, we offer a new algorithm (based on a new concept of “irrele-
vant students”) for determining the student-optimal legal assignment. Our new mechanism
provides a foundation for the generalization of Kesten’s efficiency adjusted DA-mechanism
to school choice environments where priorities are given by substitutable choice functions.
We are the first to provide an understanding of Kesten’s EADA beyond responsive priori-
ties.

Our paper also relates to several recent contributions that consider alternative fair-
ness notions to eliminating justified envy. Dur, Gitmez, and Yilmaz (2015) introduce the
concept of partial fairness. Intuitively, they define an assignment to be partially fair if
the only priorities that are violated are “acceptable violations”. Kloosterman and Troyan
(2016) also introduce a new fairness concept called essentially stable. Intuitively, an assign-
ment is essentially stable if resolving i’s justified envy of school a initiates a vacancy chain
that ultimately leads to i being rejected from a. Both Dur, Gitmez and Yilmaz (2016) and
Kloosterman and Troyan (2016) provide justifications of EADA using their respective fair-
ness notion. Partial fairness and essential stability are similar in spirit but do not directly
relate to legality. Each is a pointwise property for an assignment (but still the solution
concept is setwise) while legality is a setwise property of a solution concept. Moreover,
the analysis in both Dur, Gitmez and Yilmaz (2015) and Kloosterman and Troyan (2016)
relies heavily on the assumption of schools having responsive priorities. In many practical
applications (such as when incorporating affirmative action) these assumptions are unrea-
sonable. It is not clear whether their results continue to hold in the general environment
considered in the current paper.5

In school choice with responsive priorities, Wu and Roth (2018) study the structure
of assignments which are fair and individually rational (i.e. non-wastefulness may be
violated). They show that this set has a lattice structure and that the student-optimal
assignment of this set coincides with the student-optimal stable assignment.

In contexts where both sides are agents, in one-to-one matching problems Ehlers (2007)
studies vNM-stable sets, and Wako (2010) shows the existence and uniqueness of such
sets. In one-to-one matching legality and vNM-stability are equivalent concepts and these
results follow from our contribution. Klijn and Masso (2003) study bargaining sets in
those problems. Note that all these papers consider one-to-one settings whereas our paper
considers the most general many-to-one setting and provides an alternative solution concept
to the set of stable assignments.

We proceed as follows. Section 2 introduces school choice and all basic notions for
choice functions and assignments. Section 3 defines legal assignments. Section 3.1 gener-
alizes the Pointing Lemma, the Decomposition Lemma and the Rural Hospital Theorem
to any two individually rational assignments which do not block each other, and Section
3.2 establishes a Lattice Theorem. We then use these results to show the existence and

5Kesten (2004), Cantala and Pápai (2014) and Alcalde and Romero (2017) also introduce alternative
notions of fairness for the school assignment problem. The concepts they introduce do not directly relate
to legality.
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uniqueness of a legal set in Section 3.3. Section 4 discusses our results. Section 4.1 re-
lates legal assignments to efficiency and non-wastefulness. Section 4.2 provides a general
EADA-algorithm for calculating the student-optimal legal assignment. Section 4.3 shows
that there is a unique strategy-proof and legal mechanism, namely, the student-proposing
DA-mechanism. Section 5 concludes and explains how our results carry over to matching
with contracts. The Appendix introduces assignment with contracts and generalizes all
our results from school choice to this setting.

2 Model

We consider the following many-to-one matching problem. There is a finite set of students,
A = {i, j, k, . . .}, to be assigned to a finite set of schools, O = {a, b, c, . . .}. Each student i
has a strict preference Pi over the schools and being unassigned O∪{i} (where i stands for
being unassigned). Then iPia indicates that student i prefers being unassigned to being
assigned to school a and Ri denotes the weak preference relation associated with Pi.

We allow schools having general choice functions for priorities in order to incorporate
various assignment constraints. Let 2A denote the set of all non-empty subsets of A. Each
school a has a choice function Ca : 2A → 2A such that for all X ∈ 2A, Ca(X) ⊆ X. Then
Ca(X) denotes the set of students that school a chooses from X. Throughout we assume
Ca to satisfy the following standard properties of substitutability and the law of aggregate
demand (LAD): (a) substitutability rules out complementarities in the sense that students
chosen from larger sets should remain chosen from smaller sets and (b) LAD requires the
number of chosen students to be weakly monotonic for bigger sets of students.

Definition 1. Let a ∈ A and Ca : 2A → 2A be a choice function.

(a) The choice function Ca is substitutable if for all X ⊆ Y ⊆ A we have Ca(Y )∩X ⊆
Ca(X).6

(b) The choice function Ca satisfies the law of aggregate demand (LAD) if for all
X ⊆ Y ⊆ A we have |Ca(X)| ≤ |Ca(Y )|.7

Throughout we fix the assignment problem (A,O, (Pi)i∈A, (Ca)a∈O).
An assignment is a function µ : A → O ∪ A from students to schools and students

such that for all i ∈ A, µi ∈ O ∪ {i}. Given assignment µ and i ∈ A, let µi = a indicate
student i being assigned to school a (and µi = i indicate student i being unassigned).
We use the convention that for each school a the set µa = {i ∈ A|µi = a} denotes the
students assigned to school a. Let A denote the set of all assignments. An assignment µ is

6Note that this is equivalent to i ∈ Ca(Y ) and j ∈ Y \{i} implies i ∈ Ca(Y \{j}) (or the same condition
formulated in terms of rejected students Y \Ca(Y )).

7Here |X| denotes the cardinality of a set. LAD was introduced by Hatfield and Milgrom (2005) in a
more general model of matching with contracts. Our definition of LAD is equivalent to size monotonicity
introduced by Alkan and Gale (2003) and Fleiner (2003). We use the LAD terminology to be consistent
with the standard matching literature.
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individually rational if for every student i, µiRii and, for every school a, Ca(µa) = µa.
Throughout we will consider individually rational assignments only.8 Let IR denote the set
of individually rational assignments. An assignment µ is efficient (among all individually
rational assignments) if there exists no ν ∈ IR such that νiRiµi for all i ∈ A and νjPjµj

for some j ∈ A.
Blocking is defined as follows for general choice functions. Given an assignment µ,

student i and school a block µ if aPiµi and i ∈ Ca(µa ∪ {i}). This means that student
i prefers school a to his assignment and school a chooses i from its assigned students
and i. There are two types of blocking: school a has an empty seat available for i or
school a would like to admit i and reject a previously admitted student. These two types
are distinguished below in the usual sense. An assignment µ is non-wasteful if (it is
individually rational and) there do not exist a student i and a school a such that aPiµi and
Ca(µa ∪{i}) = µa ∪{i}. Given an assignment µ, student i has justified envy if there is a
school a such that aPiµi, i ∈ Ca(µa ∪ {i}), and Ca(µa ∪ {i}) 6= µa ∪ {i}. This means that
student i prefers a to his assignment and has higher “choice” priority because he is chosen
from the set of students assigned to school a and including him (and some other student
is rejected). An assignment is fair if (it is individually rational and) there is no justified
envy. An assignment is stable if it is individually rational, non-wasteful and fair.

Stable assignments were introduced by Gale and Shapley (1962) in two-sided matching
and adapted to school choice by Balinski and Sönmez (1999) and Abdulkadiroğlu and
Sönmez (2002). The main difference is that in two-sided matching both sides are “agents”
whereas in school choice students are “agents” and schools are “objects to be consumed”.

Nevertheless, the set of stable assignments coincide in both interpretations: the set of
stable assignments is non-empty, it is a lattice and it satisfies the strong rural hospitals the-
orem. Furthermore, note that stability is a“point-wise”property specific to one assignment
alone (but at the same time stability is a setwise solution concept).

3 Legal Assignments

We will be interested in “set-wise” blocking which will depend on the whole set of assign-
ments under consideration.

Definition 2. Let µ, ν ∈ IR and i ∈ A.

(a) Student i blocks assignment µ with assignment ν if for some school a ∈ A: (1)
aPiµi, (2) i ∈ Ca(µa ∪ {i}) and (3) νi = a.

(b) Assignment ν blocks µ if there is a student i who blocks µ with ν.

Note that in the usual blocking notion, both the blocking student and the school are
unambiguously (myopically) better off (with respect to the original assignment) whereas
here only the student is unambiguously better off (because the school’s priority ranking is

8Individual rationality can be alternatively interpreted as “feasibility” of assignments.
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not clear between µ and ν). Our main solution concept only allows blocking via assignments
which are in the set under consideration: (i) any assignment outside the set is blocked via
some assignment inside the set and (ii) any two assignments inside the set do not block
each other. Thus, for legal assignments blocking is more “sophisticated” than the “usual
one” as we have to assure the possibility of assigning the student to his desired school in a
legal way.

Definition 3. Let L ⊆ IR. Then L is legal if and only if

(i) for all µ ∈ IR\L there exists ν ∈ L such that ν blocks µ, and

(ii) for all µ, ν ∈ L, ν does not block µ.

On first sight this is similar to stable sets à la von Neumann-Morgenstern (hereafter
vNM-stability). However, under vNM-stability, both sides (often called workers and firms
instead of students and schools) are considered to be agents, and all agents must be made
better off in order to block. In school assignment only students are agents. The important
fact in our definition of blocking is that only the student is made better off and the school
may be made worse off.9 One could interpret the legality of a set of assignments as the
natural generalization of stable sets to school choice. Of course, this could be done to other
contexts in cooperative game theory containing “neutral” agents with priorities.

Throughout we will use the convention that for a given legal set L, any assignment
belonging to L is called legal and any assignment not belonging to L is called illegal.

Remark 1. In law, standing or locus standi10 is the term for the ability of a party to
demonstrate to the court sufficient connection to and harm from the law or action chal-
lenged to support that party’s participation in the case. In the United States the three
standing requirements are

(1) Injury-in-fact: The plaintiff must have suffered or imminently will suffer injury-an
invasion of a legally protected interest that is (a) concrete and particularized, and (b)
actual or imminent (that is, neither conjectural nor hypothetical; not abstract). The
injury can be either economic, non-economic, or both.

(2) Causation: There must be a causal connection between the injury and the conduct
complained of, so that the injury is fairly traceable to the challenged action of the
defendant and not the result of the independent action of some third party who is not
before the court.

9Note that legality and vNM-stability are equivalent when a school can be assigned at most one student.
For one-to-one matching problems, Wako (2010)’s algorithm modifies the original preference profile to
obtain a preference profile for which the set of stable matchings coincides with the unique vNM-stable set
of the original preference profile (and Ehlers (2007, Theorem 2) uses such an argument). His arguments
rely heavily on the assumption of one-to-one matching and it is not all clear whether they can be adapted
to many-to-one matching or to (modifying) choice functions.

10https://en.wikipedia.org/wiki/Standing (law).
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(3) Redressability: It must be likely, as opposed to merely speculative, that a favorable
court decision will redress the injury.

In our school choice setting, (1) Injury-in-fact corresponds to envy (student i prefers school
a to the school assigned under µ), (2) Causation corresponds to i’s envy being justified,
and (3) Redressability corresponds to being able to assign student i to school a in a legal
way.11

Before we continue, we illustrate our (il)legal assignments in the basic example where
we have a tradeoff between efficiency and stability.

Example 1. Let A = {1, 2, 3} and O = {a, b, c}. Let

P1 P2 P3 �a �b �c

a b a 2 1 3
b a b 3 2 2
c c c 1 3 1
1 2 3

where the choice function Cx (x ∈ O) chooses from any set X ∈ 2A the highest �x-ranked
student. It is easy to verify that

µ =

(
1 2 3
b a c

)
is the unique stable assignment. The assignment

ν =

(
1 2 3
a b c

)
is efficient and Pareto improves µ (because νiRiµi for all i ∈ A). At ν, student 3 has
justified envy because aP3ν3 and Ca({1, 3}) = {3}. However, we can never assign student
3 to school a in a legal way (i.e., the three standing requirements always hold): first, µ
is legal as there is no justified envy; second, if we assign 1 to a under assignment η, 2
has to be assigned to school b as otherwise η2 6= a, b, aP2η2, Ca({2, 3}) = {2}, and 2 is
assigned to a under the legal assignment µ; and third, given that η3 = a and η2 = b, we
have bP1η1, Cb({1, 2}) = {1} and 1 is assigned to b under the legal assignment µ. Indeed,
it can be verified that {µ, ν} is the unique legal set of assignments and it contains a unique
student-optimal legal assignment, namely ν.

In school choice, it has been argued when stability is more important than efficiency,
then first we consider the set of stable assignments and choose the unique efficient assign-
ment in this set, namely the DA assignment. If efficiency is more important than stability,
then first we consider set of efficient assignments and choose the one which minimizes

11However, this is one interpretation of our solution concept of a fair set of assignments.
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the number of blocking pairs. As it has been recently shown by Abdulkadiroğlu et al.
(2017), for one-to-one settings this leads to the TTC (top trading cycles) assignment. As
it will turn out, here we will not have this conflict of which order to choose: independently
whether we view legality (vNM-stability) more important than efficiency, or efficiency more
important than legality, this yields the same assignment, namely the student-optimal legal
assignment.

Our main challenge will be to establish the existence and uniqueness of a legal set of
assignments. For this, it will be instrumental to show for any two individually rational
assignments µ and ν, which do not block each other, a Pointing Lemma, a Decomposition
Lemma and the Rural Hospitals Theorem. Then we go on to show the lattice structure
for these assignments. Any reader, who wants to go directly to the main results, may skip
Sections 3.1 and 3.2. All proofs except for very short ones are relegated to the Appendix
where we generalize all our results to the framework of matching with contracts.

3.1 Pointing, Decomposition and Rural Hospitals Theorem

Two of the classic results in matching theory are the Pointing Lemma and the Decompo-
sition Lemma. The Pointing Lemma (attributed to Conway in Knuth, 1976) is the basis
for the proof that the set of stable marriages is a lattice.12 The Pointing Lemma compares
any two stable assignments µ and ν. We ask each man to point to his favorite wife under
the two marriages (he is possibly unmarried or married to the same woman), and we ask
each woman to point to her favorite husband. The Pointing Lemma says that no man and
woman point to each other; no two men point to the same woman; and no two women
point to the same man.

Lemma 1 (Classical Pointing Lemma). Consider a marriage problem where men and
women have strict preferences and let µ and µ′ be stable matchings. Then:

(i) no man and woman point at each other unless they are matched under both µ and µ′;

(ii) no two women point at the same man; and

(iii) no two men point at the same woman.

The key implication of the Pointing Lemma is that the assignments µ ∨ ν (defined by
each man is assigned to the woman he is pointing at) and µ ∧ ν (defined as each woman
is assigned to the man she is pointing at) are well defined. This is the basis of the Lattice
Theorem as all that remains is to show that µ ∨ ν and µ ∧ ν are also stable.

The Pointing Lemma is closely related to the Decomposition Lemma which is due to
Gale and Sotomayor (1985).

Lemma 2 (Classical Decomposition Lemma). Consider a marriage problem where men
and women have strict preferences and let µ and µ′ be stable matchings. Let M(µ′) be the
set of men who prefer µ′ to µ and let W (µ) be the set of women who prefer µ to µ′. Then
µ′ and µ map M(µ′) onto W (µ).

12Following the exposition in Roth and Sotomayor (1992), we refer to it as the Pointing Lemma.
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The Pointing Lemma generalizes to many-to-one problems in a straightforward way
when schools have responsive priorities with quotas: instead of a choice function, each
school a has a strict priority over sets of students, say �a, and a quota qa (of available
seats at a). Then �a is responsive iff for any students i, j and any set H ⊆ A\{i, j} such
that |H| ≤ qa − 1, we have (i) H ∪ {i} �a H ∪ {j} iff i �a j, and (ii) H ∪ {i} �a H iff
i �a ∅; and (iii) ∅ �a H for any H ⊆ A with |H| > qa. Now we know that the set of stable
assignments of the many-to-one market corresponds to the set of stable assignments of the
one-to-one market where any school a is split into qa copies. A similar construction can be
done for two assignments which do not block each other,13 and hence the pointing lemma
carries over in a straightforward manner from one-to-one to many-to-one.

We will show that when schools have general choice functions that only the first two
conditions of the Pointing Lemma generalize. However, the Decomposition Lemma contin-
ues to hold. To the best of our knowledge, we are the first to generalize the Pointing and
Decomposition Lemmas when schools have choice functions instead of responsive priorities
(or responsive preferences).

Since pointing indicates that the student is willing to form a blocking pair, the most
natural way to adapt pointing to non-responsive preferences is, given two assignments µ
and ν and given a student i ∈ µa \ νa, a points to i if i ∈ Ca(νa ∪ {i}).

For later purposes, instead, we define pointing using a seemingly stronger condition.
We will later show (in Corollary 2) that this condition is equivalent to the weaker version
of pointing.

Definition 4. Given two assignments µ and ν, student i points to µi (νi) if µiRiνi (νiRiµi),
and school a points to student i if i ∈ Ca(µa ∪ νa).

It is clear that under this definition of pointing that when a school points to a student,
then she is willing to form a blocking pair with that student. However, it is less clear that
each student will be pointed at. We first establish a weak version of the Pointing Lemma.

Lemma 3 (Weak Pointing Lemma). Let µ and ν be two individually rational assignments
which do not block each other. Then:

(i) no student and school point at each other unless they are assigned under both µ and
ν, and

(ii) no two schools point to the same student.

Notice that we are missing the third conclusion of the Classical Pointing Lemma. The
generalization to the school assignment problem would be as follows: no two students
point at the same school unless they are classmates (i.e. they are both assigned to that
school under either µ or ν). The following example is taken from Ehlers and Klaus (2014)
and demonstrates that this result does not hold when a school does not have responsive
priorities.

13Simply consider µ\ν (where any school a receives students µa\νa)and ν\µ with appropriately reduced
capacities (where for any school a we reduce qa by |µa∩νa| and the set of students is shrunk to A\(∪a∈O(µa∩
νa))).
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Example 2. Let O = {a, b} and A = {s1, s2, j1, j2}. University a and university b are both
hoping to hire two economists. They are considering two senior candidates, s1 and s2, and
two junior candidates, j1 and j2. Candidates sx and jx are in the same field. University
a would prefer to hire seniors to juniors, but if it must hire a mixture of the two, it would
prefer to hire candidates in the same field. Specifically:

{s1, s2} �a {s1, j1} �a {s2, j2} �a {j1, j2} �a {s1, j2} �a {j1, s2} .

If a is only able to hire one economist, then its preferences are: s1 �a s2 �a j1 �a j2. Note
that the choice function Ca induced by �a satisfies substitutability and LAD, but �a is not
responsive because {s2, j2} �a {s2, j1} and j1 �a j2.

University b has the opposite preferences:

{j1, j2} �b {s1, j1} �b {s2, j2} �b {s1, s2} �b {s1, j2} �b {j1, s2} ,

and j1 �b j2 �b s1 �b s2. Again the choice function Cb induced by �b satisfies substi-
tutability and LAD, but �b is not responsive.

Both junior candidates prefer a to b whereas both senior candidates prefer b to a. Con-
sider the assignments

µ =

(
a b

{s1, j1} {s2, j2}

)
and ν =

(
a b

{s2, j2} {s1, j1}

)
,

where under assignment µ, a receives {s1, j1} and b receives {s2, j2} (and similar for ν).
It is straightforward to verify that µ and ν are both stable (and therefore, do not block each
other). Note that both junior candidates point to a. Similarly, both senior candidates point
to b, whereas university a points to the two senior candidates and university b points to the
two junior candidates.

Our objective is to show that the pointing procedure still leads to two well-defined
assignments: assigning each student to the school she points to, and assigning each student
to the school pointing to her. Eventually, we will show that if the original assignments are
legal, then the induced reassignments are legal. But it is interesting to note that this
construction applies to any two individually rational assignments which do not block each
other.

Definition 5. Given assignments µ and ν, define µ ∧ ν by µ ∧ νa = Ca(µa ∪ νa) for all
a ∈ O.

Our main focus is on any two individually rational assignments µ and ν which do not
block each other. Then µ ∧ ν is the reassignment resulting from assigning a student to
the school that is pointing to her. The following lemma demonstrates that this yields a
well-defined assignment.

Lemma 4. Let µ and ν be two individually rational assignments which do not block each
other. Then:

11



(i) µ ∧ ν is an individually rational assignment;

(ii) if i is assigned a school under µ, then i is assigned a school under µ ∧ ν; and

(iii) every school receives the same number of students under µ and µ ∧ ν.

An immediate corollary of Lemma 4 is our version of the Rural Hospitals Theorem
(where hospitals correspond to schools in our context).14 The Rural Hospitals Theorem is
an important result for the residency matching program (Roth and Sotomayor, 1992). It
says that under any stable assignment, each hospital receives the same number of doctors.
It turns out that this result holds far more generally than when it is just applied to stable
assignments. In any two individually rational assignments which do not block each other,
each school is assigned the same number of students.

Corollary 1 (Rural Hospitals Theorem). Let µ and ν be two individually rational assign-
ments which do not block each other. Then

(i) for any school a, |µa| = |νa|; and

(ii) for any student i, µi = i if and only if νi = i.

Lemma 4 allows us to strengthen the Pointing Lemma.

Corollary 2 (Strong Pointing Lemma). Let µ and ν be two individually rational assign-
ments which do not block each other.

(i) If a student is assigned a school under either µ or ν, then she points to one school
and is pointed to by one school.

(ii) For any school a, a points to |µa| = |νa| students and |µa| = |νa| students point to a.

(iii) Let i ∈ A be such that µi = b and νi = a. Then i ∈ Ca(µa ∪ {i}) if and only if
i ∈ Ca(µa ∪ νa).

Proof. We show (i) and (ii) in the Appendix.

(iii): By substitutability of Ca, if i ∈ Ca(µa ∪ νa), then i ∈ Ca(µa ∪ {i}). In showing the
other direction, suppose that i ∈ Ca(µa ∪ {i}) but i /∈ Ca(µa ∪ νa). Because µ and ν do
not block each other, we must have b = µiPiνi = a and i does not point to a. Thus, i
points to µi = b. Because i /∈ Ca(µa ∪ νa), school a does not point to i. But then by (i),
school b must point to i meaning i ∈ Cb(µb ∪ νb). Now by substitutability of Cb, we have
i ∈ Cb(νb ∪ {i}). But then i blocks ν with µ, a contradiction.

14One could also refer to this as the “Rural Schools Theorem” in our context with the appropriate
interpretation.
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We have already established that if we reassign each student to the school pointing
to her, then this results in a well-defined assignment. It is immediate from Corollary 2
that reassigning students to the school they are pointing to is an individually rational
assignment. We refer to this assignment as µ ∨ ν.

Definition 6. Let µ and ν be two individually rational assignments which do not block
each other. Define the assignment µ ∨ ν as follows: for all i ∈ A,

µ ∨ νi = max
Pi

{µi, νi} .

Lemma 5. Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν is an individually rational assignment.

We conclude by showing that the Classical Decomposition Lemma generalizes to our
environment. In the classical formulation, the Decomposition Lemma asks the men and
women “Do you prefer µ or ν?”. We do not know the preferences of the schools but instead
know their choice functions. The analogous question (for the students) in choice language
is “Do you choose your assignment under µ or ν?”. Note that by construction, student i’s
answer is µ∨νi. We cannot ask a school “Do you choose µ or ν?” since we do not know the
schools preferences. However, we can ask them the following question: “Which students do
you choose among all the students you were assigned?” Note that by construction, school
a’s answer is µ ∧ νa. Our generalization of the Classical Decomposition Lemma is to show
that there is a one-to-one mapping between the two answers.

Lemma 6 (Generalized Decomposition Lemma). Let µ and ν be two individually rational
assignments which do not block each other, and let i be a student such that µi 6= νi.
Student i chooses school a if and only if school a rejects i. Formally, µ∨ νi = a if and only
if i 6∈ µ ∧ νa = Ca(µa ∪ νa).

3.2 Lattice Theorem

Since school choice problems have a non-empty set of stable assignments (the core), the
following heuristic way of finding a set of legal assignments (as already suggested by von
Neumann-Morgenstern) is plausible.

Recall that IR denotes the set of all individually rational assignments. We call a
function f : 2IR → 2IR an operator. We define an operator f to be increasing if X ⊆ Y ⊆
IR implies f(X) ⊆ f(Y ), and analogously, f is decreasing if X ⊆ Y implies f(X) ⊇ f(Y ).

The following operator will be central for finding legal assignments. Given any set of
assignments X ⊆ IR, π(X) is the set of individually rational assignments which are not
blocked by any assignment in X:

π(X) = {µ ∈ IR | @ ν ∈ X such that ν blocks µ} . (1)

The following three properties are straightforward to verify but will be useful.

13



Lemma 7. The operator π defined in (1) satisfies:

(i) π is decreasing.

(ii) π2 is increasing.

(iii) If J is the set of stable assignments, then J ⊆ π(M) for any set M ⊆ IR.

Proof. If a student is able to block with more assignments, then fewer assignments will
remain unblocked. Therefore, π is a decreasing operator. Consider two sets of assignments
X and Y such that X ⊆ Y ⊆ IR. Since π is decreasing, π(Y ) ⊆ π(X). Again, since π
is decreasing, π(π(X)) ⊆ π(π(Y )). Therefore, π2 is increasing. Finally, stable assignments
are not blocked by any assignment. Therefore, they are not blocked by any assignment in
IR.

As it turns out, any legal set of assignments is a fixed point of the operator π (and vice
versa).

Lemma 8. Let L ⊆ IR. Then L is a legal set if and only if π(L) = L.

Proof. Suppose L is legal. If µ ∈ L, then µ is not blocked by any ν ∈ L. Therefore,
L ⊆ π(L). Similarly, if µ ∈ π(L), then by construction there does not exist ν ∈ L such
that ν blocks µ. Therefore, π(L) ⊆ L. For the other direction, suppose that π(L) = L.
Then µ 6∈ L if and only if µ 6∈ π(L) (since L = π(L)) if and only if there exists a ν ∈ L
such that ν blocks µ (by the definition of π). Therefore, L is legal.

It is not obvious that a legal set of assignments must exist (we will show this later).
Suppose that a legal set of assignments does exist. We define S0 = ∅, and we set B0 =
π(S0). Note that B0 = IR, the set of all individually rational assignments. Continuing,
we let S1 = π(B0). Note that S1 is the set of stable assignments. In general, we define:

S0 = ∅
Bk = π(Sk)

Sk+1 = π(Bk) = π2(Sk)

Let L be a legal set of assignments. It is trivially true that S0 ⊆ L ⊆ B0. If µ is a
stable assignment, then µ is not blocked by any assignment. Therefore, the set of stable
assignments, S1, must be contained in L. Moreover, a legal set of assignments must be
internally consistent. Since S1 is contained in any legal set, no assignment blocked by an
assignment in S1 can be part of any legal set. Therefore, L ⊆ B1. Similarly, if L is a legal
set of assignments, and µ is not blocked by any assignment in B1, then µ is not blocked by
any assignment in L. Therefore, by external stability, µ must be legal. Therefore, it must
be that S2 ⊆ L, and so on.

14



In general, for any k, if L is a legal set of assignments then:

S0 ⊆ S1 ⊆ . . . ⊆ Sk ⊆ L ⊆ Bk ⊆ . . . ⊆ B1 ⊆ B0

We seek a fixed point of the operator π; however, it is not obvious that such a fixed
point exists. However, since π2 is an increasing function, a fixed point of π2 must exist. In
particular, since there are only a finite number of possible assignments, there must be a n
such that Sn = Sn+1.15

Furthermore, for this fixed point we have Sn ⊆ π(Sn): Trivially, S0 ⊆ π(S0) = B0.
Now suppose by induction that we have Sk−1 ⊆ π(Sk−1). Because π2 is increasing, we have
π2(Sk−1) ⊆ π3(Sk−1). Thus,

Sk = π2(Sk−1) ⊆ π3(Sk−1) = π(π2(Sk−1)) = π(Sk),

which yields the desired conclusion Sk ⊆ π(Sk).
Thus, if Sn is a fixed point of π2, then the two key properties of Sn are:16

(1)Sn ⊆ π(Sn) and (2)Sn = π2(Sn).

Our main challenge will be to show that in fact Sn = Bn. This will establish the existence
and uniqueness of a legal set of assignments. However, we first establish properties of Sn

that will be used in our proof. We will show that any set with properties (1) and (2) is a
lattice and satisfies the Rural Hospitals theorem.

So far we have only compared individually rational assignments which do not block each
other. Next we strengthen our results by considering the additional structure inherent in
Sn. We will show that Sn is a lattice under the following partial order which was inspired
by Blair (1988) and Martinez et al. (2001).17 Strikingly, our results are analogous to the
properties of the stable set of assignments (Roth and Sotomayor, 1990) and the set of
individually rational assignments that eliminate justified envy (Wu and Roth, 2018).

µ ≥ ν if for every school a ∈ O,Ca(µa ∪ νa) = νa (2)

15This follows from Tarski’s fixed point theorem because 2IR is a partially ordered set with respect to
set inclusion and π2 is increasing. Moreover, Tarski’s theorem says that the set of fixed points of π2 is a
lattice with respect to unions and intersections of sets. However, his result does not tell us anything about
the structure of the assignments belonging to a fixed point of π2.

16This is very closely related to the concept of a subsolution defined in Roth (1976). What is now called
a vNM-stable set was originally referred to by von Neumann and Morgenstern as a solution. Roth (1976)
introduced a generalization of vNM-stability called a subsolution: A subsolution is any set S such that (1)
S ⊆ π(S) and (2) S = π2(S) (and we used above Roth’s argument to show the existence of a subsolution).
The reason we do not call our set Sn a subsolution is that the definition of blocking is different in our
framework than under the traditional vNM-stability. We thank Federico Echenique for pointing out this
connection.

17Note that it is an immediate corollary of Tarski’s Fixed Point Theorem that Sn is a lattice. However,
we will be able to prove the stronger properties of Sn by using first principles.
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Lemma 9. Let µ and ν be two individually rational assignments which do not block each
other. Then

µ ∨ ν ≥ µ ≥ µ ∧ ν.

Lemma 10. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. For any µ, ν ∈ S,
µ ∨ ν ∈ S and µ ∧ ν ∈ S. In particular, S with partial order ≥ is a lattice.

Let µI be the student-optimal assignment in S and let µO be the school optimal as-
signment in S. The key step for the proof of Theorem 1 is to show that any individually
rational assignment which is not blocked by S, must lie in between µI and µO with respect
to students’ preferences.

Lemma 11. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. For every
λ ∈ π(S) and every student i, µI

i Ri λi Ri µ
O
i .

3.3 Existence and Uniqueness

We are now ready to prove the main theorem. As a reminder, we set S0 = ∅, S1 = π2(∅),
Sk = π2(Sk−1) and Bk = π(Sk). We defined S as the first fixed point of our construction,
i.e. S = π2(S). Let B = π(S). By Lemma 10, S is a lattice, and we may let µI denote the
student-optimal assignment in S and µO denote the school-optimal assignment in S.

In the Appendix we establish that any such fixed point must be a legal set of assign-
ments.

Theorem 1. There exists a legal set of assignments.

We can now prove that there exists a unique legal set of assignments.

Theorem 2. There exists a unique legal set of assignments.

Proof. By Lemma 8, L is a legal set of assignments if and only if π(L) = L.
Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) S = π2(S). By the proof of Theorem

1, we have S = π(S). Thus, S is legal.
To show uniqueness, let L be any legal set of assignments. By (iii) of Lemma 7,

S1 ⊆ π(L) = L. By (i) of Lemma 7, π is decreasing. Therefore, π(L) = L ⊆ π(S1) = B1.
Repeating this argument, for any legal set L it holds that

S0 ⊆ S1 ⊆ . . . Sn ⊆ L ⊆ Bn ⊆ . . . B2 ⊆ B1.

Since there exists n such that Sn = Sn+1 = π2(Sn) and Sn ⊆ π(Sn) = Bn, the proof of
Theorem 1 implies Sn = π(Sn) = Bn. Thus, by Sn ⊆ L ⊆ Bn we conclude L = Sn.
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4 Discussion

4.1 Efficiency and Non-Wastefulness

First, we discuss various properties of the student-optimal legal assignment. Because any
individually rational assignment outside L is illegal, it must be that µI is not Pareto
dominated by any individually rational assignment.

Proposition 1. The student-optimal legal assignment µI is efficient.

Proof. By Theorem 2, there exists a unique legal set of assignments L. By Lemma 8,
π(L) = L. Thus, (1) L ⊆ π(L) and (2) π2(L) = L. Suppose that there exists ν ∈ IR
such that for all i ∈ I, νiRiµ

I
i and for some j ∈ I, νjPjµ

I
j . By Lemma 11 and L = S,

ν /∈ L. Since ν is illegal, there exists µ ∈ L which blocks ν. Thus, for some i ∈ A we have
µiPiνiRiµ

I
i . But again by Lemma 11, µI

iRiµi, which is a contradiction to transitivity of
Pi.

It is well-known that the student-optimal stable assignment is weakly efficient among all
individually rational assignments. Hence, Proposition 1 describes the important advantage
of the student-optimal legal assignment over the student-optimal stable assignment: the
student-optimal legal assignment is “ideal” as it is efficient among all individually rational
assignments and legal (or fair à la vNM when students are the only active agents).

As the example below shows, efficiency of the student-optimal legal assignment is not
guaranteed when Pareto domination is allowed via non-individually rational assignments
(and as it is known, the student-optimal stable assignment is not necessarily weakly effi-
cient). Furthermore, the example establishes that non-individually rationally assignments
are not necessarily blocked by legal assignments, and the Pointing Lemma may be violated.

Example 3. Let A = {1, 2} and O = {a, b}. Let

P1 P2 �a �b

a b 2 1
1 2 a b
b a 1 2

where the above stands for aP11P1b and �b stands for Cb({1}) = Cb({1, 2}) = {1} and
Cb({2}) = ∅, and similarly for �a. Let µ0 be such that µ0

1 = 1 and µ0
2 = 2. Then

IR = {µ0} and L = {µ0}, and µ0 is the unique stable assignment. Considering µ such
that µ1 = a and µ2 = b we see that µ0 is not (weakly) efficient. In addition, µ and µ0 do
not block each other but the pointing lemma is violated for these two assignments: 1 and 2
would point to a school but no school would point to a student.

One would expect legal assignments to be non-wasteful. The following example shows
that wasteful assignments may be legal. Of course, by Proposition 1, the student-optimal
legal assignment is non-wasteful (as otherwise it would not be efficient among individually
rational assignments).
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Example 4. Let A = {1, 2} and O = {a, b, c}. Let

P1 P2 �a �b �c

b a 1 2 1
c c 2 1 2
a b a b c
1 2

.

Let µ1 = b and µ2 = a. It is easy straightforward to verify that µ is the unique stable
assignment. There is no legal assignment where 1 is assigned school c: to see this, let ν
be any assignment such that ν1 = c; if ν2 6= b, then νb = ∅, Cb(νb ∪ {1}) = {1} and bP1c
meaning that 1 blocks ν with µ; thus, ν2 = b and we have νa = ∅, Ca(νa ∪ {2}) = {2}
and aP2b meaning that 2 blocks ν with µ. A similar argument shows that there is no legal
assignment where 2 is assigned school c. Consider the assignment µ′ defined by µ′1 = a and
µ′2 = b. There is no legal assignment where 1 is assigned to c and 1 cannot block µ′ with
any assignment where 1 is assigned school b because 2 �b 1. Therefore, 1 cannot block µ′,
and similarly 2 cannot block µ′. Therefore, µ′ is legal and L = {µ, µ′} is the unique legal
set of assignments.

But the legal assignment µ′ is wasteful because cP1µ
′
1 = a and Cc(µ

′
c∪{1}) = Cc({1}) =

{1}.

Non-wastefulness allows for blocking of students and “empty” slots (in the sense that
adding a student to a school would result in the choice of this student and all previously
assigned students). However, as we show below, legal assignments satisfy a weaker property
of non-wastefulness (where blocking is only allowed with unassigned students and “empty”
slots): µ is weakly non-wasteful if there exist no student i and school a such that µi = i,
aPii and Ca(µa ∪ {i}) = µa ∪ {i}.

Proposition 2. If µ is legal (µ ∈ L), then µ is weakly non-wasteful.

Proof. Let µ ∈ L. Suppose there exists a student i and a school a such that µi = i, aPii
and Ca(µa ∪ {i}) = µa ∪ {i}. Let µ′ be such that µ′i = a and µ′j = µj for all j ∈ A\{i}.
Then by the previous facts and µ ∈ IR, it follows that µ′ ∈ IR. Since |µ′a| = |µa|+ 1 and
the Rural Hospitals Theorem holds for all assignments in L, we have µ′ /∈ L. Thus, there
exist j ∈ A and ν ∈ L such that j blocks µ′ with ν. Thus, νjPjµ

′
j and (letting νj = b)

j ∈ Cb(µ
′
b ∪ {j}). Since µb ⊆ µ′b, substitutability of Cb implies j ∈ Cb(µb ∪ {j}). If j 6= i,

then µ′j = µj and j blocks µ with ν, a contradiction to µ, ν ∈ L. If j = i, then bPiaPii and
by µi = i, i blocks µ with ν, again a contradiction to µ, ν ∈ L.

4.2 General EADA

Below we provide an algorithm for calculating the student-optimal legal assignment. The
deferred-acceptance (DA) assignment is the student-optimal stable assignment and it is
found by the (student-proposing) deferred-acceptance (DA) algorithm.18 To the best of

18The proof of Lemma 11 contains a formal description of the DA-algorithm.
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our knowledge, Kesten’s efficiency adjusted DA (EADA) has only been defined for re-
sponsive choice functions. Kesten’s original EADA mechanism and the simplified EADA
mechanism (hereafter sEADA) introduced by Tang and Yu (2014) produce the same assign-
ment when schools have responsive choice functions. The sEADA is based on the concept
of an underdemanded school.

For a given assignment µ, a school a is underdemanded if for every student i, µiRia.
For responsive priorities, sEADA is defined as follows.

The (simplified) Efficiency Adjusted Deferred Acceptance Mechanism (sEADA)
when choice functions are acceptant:
Round 0: Run DA for the problem P . For each underdemanded school19 a and each
student i assigned to a, permanently assign i to a and then remove both i and a.
Round k: Run DA on the remaining population. For each underdemanded school a and
each student i assigned to a, permanently assign i to a and then remove both i and a.
Stop when no school is underdemanded.

Tang and Yu (2014) note two facts which are critical for their mechanism. First, under
the DA assignment, there always exists an underdemanded school. For example, the last
school that any student applies to is an underdemanded school. Second, a student assigned
by DA to an underdemanded school cannot be part of a Pareto improvement. However,
as Example 5 demonstrates, when choice functions are not responsive, there does not
necessarily exist an underdemanded school. In this case, sEADA no longer produces an
efficient assignment.

Example 5. Let O = {a, b, c, d} and A = {1, 2, 3, 4, 5}, and suppose qa = 2 while all other
schools have a capacity of 1. Suppose the preferences of the students and the priorities of
the schools (other than a) are defined as below (where we specify the two highest ranked
elements only):

P1 P2 P3 P4 P5 �b �c �d

b a a c d 3 2 4
a c b d a 1 4 5

.

School a has more complicated preferences. Intuitively, a chooses at most one student from
students 1, 2, and 3 (where the students are ranked �a: 1, 2, 3) and at most one student
from 4 and 5 (where �′a: 4, 5). More formally, given a set of students X,

Ca(X) = (max
�a

X ∩ {1, 2, 3}) ∪ (max
�′

a

X ∩ {4, 5})

Note that Ca is substitutable and satisfies LAD. The DA-assignment is given by:

µ =

(
1 2 3 4 5
a c b d a

)
19Note that a student may also be unassigned. For expositional convenience, we interpret being unas-

signed as being assigned to the null school which has unlimited capacity. Since the DA assignment is
individually rational, every student weakly prefers her assignment to being unassigned. Therefore, the null
school is underdemanded.
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However, there is no underdemanded school as 2 would prefer a, 1 would prefer b, 4 would
prefer c, and 5 would prefer d. Further, the DA assignment is Pareto dominated by the
following individually rational assignment:

ν =

(
1 2 3 4 5
b c a d a

)
Note that ν is not Pareto dominated by any other individually rational assignment (because
assigning 2 and 3 to a is not individually rational). It is straightforward to verify that ν is
legal.20

As Example 5 demonstrates, eliminating underdemanded schools with their assigned
students does not work and sEADA does not find an efficient assignment. The following
notion will turn out to be important for our algorithm.

Definition 7. Let µ ∈ IR and i ∈ A. Then student i is irrelevant for µ if for µi = a
we have

Ca({j ∈ A|aRjµj}\{i}) ⊆ µa.

In words, student i is irrelevant for µ if student i is assigned to a under µ and school
a chooses from the set of students, who weakly prefer a to their assignment, excluding i,
a subset of the students assigned to a under µ. Then it is irrelevant whether student i is
present, because from the set of students, who weakly prefer a, school a does not choose
any new ones. Notice that in contrast to underdemanded schools, this is a condition in
terms of students.

Example 5 (continued). In Example 5, student 5 is irrelevant for µ because we have
µi = a and

Ca({j ∈ A|aRjµj}\{5}) = Ca({1, 2, 3, 5}\{5}) = Ca({1, 2, 3}) = {1} ⊆ {1, 5} = µa.

It is easy to see that 5 is the only student who is irrelevant for µ. As it turns out, the
following iterative procedure will work: identify all irrelevant students for µ replace their
preferences with ones where their assigned school is the unique acceptable school. Let P 1

5

denote the preference relation such that a is the only acceptable school, and let P 1 =
(P 1

5 , P−5) (i.e. we replace 5’s preference with P 1
5 and leave all other preferences unchanged).

Now running the DA algorithm for P 1 gives us still µ. Now student 4 is irrelevant for µ
(under P 1) because we have µ4 = d and (noting aP 1

5 d)

Cd({j ∈ A|dR1
jµj}\{4}) = Cd({4}\{4}) = ∅ ⊆ µd.

20To see that it is not blocked by any legal assignment, note that the only student with justified envy is
2. However, if 2 is assigned to a, then 1 must be assigned to b or else 1 will block with the DA assignment.
But if 1 is assigned to b, then 3 must be assigned to a or else she will block with the DA assignment.
However, it is not individually rational to assign both 2 and 3 to a.
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Let P 2
4 denote the preference relation such that d is the only acceptable school, and let

P 2 = (P 2
4 , P

1
−4). Then we obtain the preference profile

P1 P2 P3 P 2
4 P 1

5

b a a d a
a c b

.

Running now DA for P 2 gives us the assignment

η =

(
1 2 3 4 5
a c b d a

)
.

Now student 2 is irrelevant for η (under P 2) because we have η2 = c and (noting dP 2
4 c)

Cc({j ∈ A|dR2
jηj}\{2}) = Cc({2}\{2}) = ∅ ⊆ µc.

Let P 3
2 denote the preference for 2 such that c is the only acceptable school, and let P 3 =

(P 3
2 , P

2
−2). Then we obtain the preference profile

P1 P 3
2 P3 P 2

4 P 1
5

b c a d a
a b

.

Running now DA gives us the assignment ν, which is the desired Pareto improvement over
µ (and all students are irrelevant for ν under P 3).

The following result show the important facts of irrelevant students.
Given assignment µ and student i, we say that student i is Pareto improvable if there

exists ν ∈ IR such that νiPiµi and for all j ∈ A, νjRjµj. This simply means that there
exists a Pareto improvement over µ where i strictly prefers his assigned school to the one
from µ.

Lemma 12. Let µ be the DA assignment.

(i) There always exists a student who is irrelevant for µ.

(ii) If student i is irrelevant for µ, then i is not Pareto improvable.

We will show that the algorithm below works for any choice functions satisfying sub-
stitutability and LAD.

The general Efficiency Adjusted Deferred Acceptance Mechanism (gEADA):
Round 0: Run DA for the problem P . Let µ0 denote the DA assignment, I0 = ∅ and
P 0 = P .
Round k: This round consists of two steps.
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1. Let Ik denote the set of all students who are irrelevant for µk−1. If i ∈ Ik, then let
P k
i be the preference for i where µk−1

i is the only acceptable school. If i /∈ Ik, then
let P k

i = P k−1
i , and let P k denote the resulting profile.

2. Let µk denote the DA assignment obtained from P k.

Stop when Ik = A.

The following shows that the gEADA algorithm is well defined.

Lemma 13. (i) For all k ≥ 1, Ik−1 ⊆ Ik and µk Pareto dominates µk−1.

(ii) If A\Ik−1 6= ∅, then Ik\Ik−1 6= ∅.

The following captures the two key features of the gEADA algorithm: the output of
gEADA is efficient and it coincides with the student-optimal legal assignment. Thus, the
gEADA algorithm offers a polynomial algorithm to determine the student-optimal legal
assignment. In the Appendix, we generalize this result to the setting of assignment with
contracts, i.e. even in this general setting we are able to determine the student-optimal
legal assignment.

Theorem 3. (i) The gEADA assignment is efficient.

(ii) The output of gEADA algorithm coincides with the student-optimal legal assignment.

Below we show that gEADA and sEADA coincide when schools have responsive pri-
orities with quotas: a student is assigned to an underdemanded school if and only if the
student is irrelevant.

Lemma 14. Let schools have responsive priorities with quotas, µ be the DA assignment
and i ∈ A. Then student i is irrelevant for µ if and only if µi is underdemanded.

Proof. Because school a has responsive priorities with quota qa and strict priority �a over
students, Ca chooses from any set the qa highest �a-ranked students (all if there are fewer
than qa students in the set).

If student i is irrelevant for µ and µi = a, then Ca({j ∈ A|aRjµj}\{i}) ⊆ µa. Because
i ∈ µa, we have Ca({j ∈ A|aRjµj}\{i}) ⊆ µa\{i} and |µa\{i}| ≤ qa−1. Because Ca chooses
the first qa elements according to �a (if possible), we must have {j ∈ A|aRjµj}\{i} =
µa\{i}. Thus, for all j ∈ A, µjRja and school a is underdemanded.

In showing the other direction, let a be underdemanded and i ∈ µa. Then for all j ∈ A,
µjRja, and Ca({j ∈ A|aRjµj}\{i}) = Ca(µa\{i}) ⊆ µa where the last inclusion follows
from the fact that Ca is responsive with quota qa. Thus, i is irrelevant for µ.
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Remark 2. First, by Lemma 14 and Theorem 3, for responsive priorities, the student-
optimal legal assignment and EADA coincide.21 Second, the student-optimal legal assign-
ment offers a foundation for the extension of Kesten’s EADA from responsive priorities to
choice functions satisfying substitutability and LAD.22

4.3 Strategy-Proofness

Below we consider centralized mechanism design where students have to report their pref-
erences to the clearinghouse. We keep everything fixed except for students’ preferences.
Let P i denote the set of all i’s strict preferences over O ∪ {i}, and PA = ×i∈AP i.

A mechanism is a function ϕ : PA → A choosing for profile P assignment ϕ(P ). Then
ϕ is strategy-proof if for all i ∈ A, all P ∈ PA and all P ′i ∈ P i we have ϕi(P )Riϕi(P

′
i , P−i).

This means that reporting the truth is a weakly dominant strategy. A mechanism is legal
if for all profiles P , ϕ(P ) is a legal assignment.

Let DA denote the student-proposing deferred-acceptance mechanism.

Theorem 4. DA is the unique strategy-proof and legal mechanism.

Proof. Because DA is stable, we have that DA is legal. Strategy-proofness of DA has been
established by Roth (1982) and Dubins and Freedman (1981).

In showing the converse, let ϕ be strategy-proof and legal. We show that for all P ∈
PA and all i ∈ A, ϕi(P )RiDAi(P ). Suppose not. Then there exists i ∈ A such that
DAi(P )Piϕi(P ). Thus, by individual rationality, DAi(P ) 6= i, say DAi(P ) = a. Let
P ′i ∈ P i be such that for all b ∈ O, (i) if bRia, then bR′ia and (ii) if aPib, then aP ′i iP

′
i b. By

construction, stability of DA(P ) under P implies stability of DA(P ) under (P ′i , P−i). Thus,
DA(P ) is legal under (P ′i , P−i). Then by the rural hospitals theorem of legal assignments,
we have ϕi(P

′
i , P−i) 6= i. Thus, by construction of P ′i ,

ϕi(P
′
i , P−i)RiaPiϕi(P ),

which implies that ϕ is not strategy-proof, a contradiction.
Hence, we have shown for all P ∈ PA and all i ∈ A, ϕi(P )RiDAi(P ). If ϕ 6= DA, then

there exists P ∈ PA and i ∈ A such that ϕi(P )PiDAi(P ). Thus, by individual rationality,
ϕi(P ) 6= i, say ϕi(P ) = a. Let P ′i ∈ P i be such that for all b ∈ O, (i) if bRia, then
bR′ia and (ii) if aPib, then aP ′i iP

′
i b. By strategy-proofness of ϕ, ϕi(P

′
i , P−i) 6= i. But then

by the rural hospitals theorem of legal assignments, we have DAi(P
′
i , P−i) 6= i. Thus, by

construction of P ′i ,
DAi(P

′
i , P−i)RiaPiDAi(P ),

which implies that DA is not strategy-proof, a contradiction.

21Thus, the student-optimal legal assignment and the student-optimal “possible” assignment by Morrill
(2016a,b) coincide with the assignment made by EADA. Morrill (2016a,b) rely critically on two assump-
tions: each school has responsive priorities and the school assignments considered are non-wasteful.

22Note that it is even not clear what the right formulation of Kesten’s EADA is for these environments.
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Thus, by Theorem 4, any strategy-proof mechanism different than DA must be ille-
gal. Our argument is similar to Abdulkadiroğlu, Pathak and Roth (2009) who show that
no strategy-proof mechanism can Pareto dominate DA for school choice with responsive
(weak) priorities. In particular, the top-trading cycles algorithm is illegal (and it is easy
to see that all variants of the Boston mechanism are illegal).23

5 Conclusion

When a school board chooses an assignment mechanism, it typically balances efficiency and
fairness. However, a critical pragmatic consideration for any board is which assignments
are legal. We show that there is a unique set of legal assignments, and that there is
always a unique efficient assignment that is legal. Prior to our work, it was thought that
there was no “ideal” solution to the school assignment problem as it is impossible for a
mechanism to be both efficient and eliminate justified envy. When elimination of justified
envy is more important than efficiency, the DA mechanism was recommended because
for setwise solution concept of stability, the DA assignment Pareto dominates (from the
students’ perspective) all other stable assignments. When efficiency is more important than
elimination of justified envy, the TTC mechanism was recommended. However, we show for
the set of individually rational assignments, when considering fairness as a setwise property
of a solution concept (where justified envy is eliminated only with legal assignments), there
exists a unique legal and efficient assignment which Pareto dominates (from the students’
perspective) all other legal assignments. Independently in which order we regard efficiency
and legality (vNM-stability), we obtain the same outcome, namely the student-optimal
legal assignment. It is fair in a meaningful way, and it Pareto dominates any other fair
or legal assignment. Combined, our results offer a foundation of the generalization of
the assignment made by Kesten’s EADA from responsive choice priorities to our general
framework. Our contribution is the first one to propose a setwise stability property for a
solution concept when choice functions are not necessarily responsive. One may see this as
the ideal school assignment.

Von Neumann and Morgenstern (1944) believed that stable sets should be the main
solution concept for cooperative games in economic environments. Unfortunately, there
is no general theory for stable sets. The theory has been prevented from being successful
because it is very difficult working with, which Aumann (1987) explains as follows: “Finding
stable sets involves a new tour de force of mathematical reasoning for each game or class of
games that is considered. Other than a small number of elementary truisms (e.g. that the
core is contained in every stable set), there is no theory, no tools, certainly no algorithms.”
Our contribution is in contrast to this as we find a unique legal set and we propose to
implement the student-optimal legal assignment in applications (which has nice properties).

Most importantly, we generalize all our results to the framework of assignment with
contracts (or matching with contracts): any contract is associated with one student and
one school. School choice is the special case where for any student-school pair there exists

23One may also use Alva and Manjunath (2016) to show Theorem 4.
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exactly contract which is associated with this pair. The general framework allows to capture
many other applications where the terms of the match can vary. The Appendix shows
that all our conclusions continue to hold for this important framework, and therefore, the
student-optimal legal assignment provides an efficient and vNM-stable solution for these
applications. In particular, we provide an algorithm (which one could call the efficiency-
adjusted cumulative offer process) for calculating the student-optimal legal assignment in
the contracts framework.
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APPENDIX: ASSIGNMENT WITH CONTRACTS

Below we generalize all our results from school choice to matching with contracts. For
the Appendix, we use Lemma N’ to denote Lemma N from the main text translated to
the setting of assignment with contracts, and the proof of Lemma N’ gives the proof of
Lemma N (and similarly, for Corollary N’ or Theorem N’). The structure of the Appendix
is parallel to the one in the main text, we follow the same order as for school choice.

A Model

Recall that A denotes the set of students and O denotes the set of schools. Let X denote
the set of all contracts. Each contract x ∈ X is associated with one student xA ∈ A and
one school xO ∈ O. Given Y ⊆ X , let Yi denote the set of contracts associated with student
i and Ya denote the set of contracts associated with school a. In school choice, we simply
have Xi = O for all i ∈ A (i.e. there is exactly one contract associated with any school).

Each student i has a strict preference Pi over Xi∪{i}. Let Ci denote the choice function
induced by Pi: for any Y ⊆ X , let Ci(Y ) = maxPi

Yi ∪ {i}.
Any school a has a choice function Ca : 2X → 2X such that for any Y ⊆ X we have

Ca(Y ) ⊆ Ya. Substitutability and LAD are straightforward to adapt to the setup with
contracts: Let a ∈ A and Ca : 2A → 2A be a choice function.

(a) The choice function Ca is substitutable if for all X ⊆ Y ⊆ A we have Ca(Y )∩X ⊆
Ca(X).

(b) The choice function Ca satisfies the law of aggregate demand (LAD) if for all
X ⊆ Y ⊆ A we have |Ca(X)| ≤ |Ca(Y )|.

Any µ ⊆ X is an assignment. An assignment µ is individually rational if for all i ∈ A,
µi = Ci(µ) and for all a ∈ O, Ca(µ) = µa. Let IR denote the set of all individually rational
assignments. Again, throughout we consider only individually rational assignments. An
assignment µ is efficient (among all individually rational assignments) if there exists no
ν ∈ IR such that νiRiµi for all i ∈ A and νjPjµj for some j ∈ A.

Given assignment µ, student i and school a block µ via contract x if xPiµi and x ∈
Ca(µ∪ {x}) (where this implies xA = i and xO = a). An assignment µ is non-wasteful if
there do not exist i and a and a contract x such that xPiµi and Ca(µa ∪ {x}) = µa ∪ {x}.
An assignment is fair if there do not exist i and a and a contract x such that xPiµi and
x ∈ Ca(µa ∪ {x}) 6= µa ∪ {x}. An assignment is stable if it is individually rational,
non-wasteful and fair.

B Legal Assignments

Now blocking among assignments carries over in a straightforward fashion: i blocks µ with
ν if for some x ∈ Xi,
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(1) xPiµi,

(2) x ∈ Ca(µa ∪ {x}) and

(3) νi = x.

Then µ blocks ν if there exists a student i who blocks µ with ν.
Now L ⊆ IR is a legal set of assignments if and only if

(i) for all ν ∈ IR\L there exists µ ∈ L such that µ blocks ν and

(ii) for all µ, ν ∈ L, µ does not block ν.

B.1 Pointing, Decomposition and Rural Hospitals Theorem

Regarding pointing, we let students and schools point to contracts instead of pointing to
schools and students. Given two assignments µ and ν, student i points to µi (νi) if µiRiνi
(νiRiµi) and school a points to x ∈ X if x ∈ Ca(µa ∪ νa). Then Lemma 3 (Weak Point-
ing Lemma) carries over in the following way: let µ and ν be two individually rational
assignments which do not block each other. Then (i) no student and school point to the
same contract unless the contract belongs to µ and ν and (ii) no two schools point to two
contracts which are associated with the same student.

Lemma 3’.(Weak Pointing Lemma) Let µ and ν be two individually rational assignments
which do not block each other. Then:

(i) no student and school point to the same contract unless the contract belongs to both
µ and ν, and

(ii) no two schools point to two contracts which are associated with the same student.

Proof. Consider any student i such that µi 6= νi. Without loss of generality, assume µiPiνi.
By individual rationality of µ and ν, we have µi 6= i. Let (µi)O = a. Then i points to
µi. By substitutability of Ca and µi ∈ µa, if µi ∈ Ca(µa ∪ νa), then µi ∈ Ca(νa ∪ {µi}).
Therefore, if a pointed to µi (meaning µi ∈ Ca(µa ∪ νa)), then i would block ν with µ
(because µi ∈ µa), a contradiction. For any student i such that µi 6= νi, by µiRii and νiRii,
i must point to a contract. Therefore, if two schools point to two contracts associated
with the same student, there must be a student and a school pointing to the same contract
which would be a contradiction to the above.

Definition 5’. Given assignments µ and ν, define µ∧ν by µ∧νa = Ca(µa∪νa) for all a ∈ O.

Our main focus is on any two individually rational assignments µ and ν which do not
block each other. The following lemma demonstrates that µ ∧ ν yields a well-defined as-
signment. Note that receiving a contract corresponds to receiving a student in the school
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choice model.

Lemma 4’. Let µ and ν be two individually rational assignments which do not block each
other. Then:

(i) µ ∧ ν is an individually rational assignment;

(ii) if µi 6= i, then µ ∧ νi 6= i; and

(iii) every school receives the same number of contracts under µ and µ ∧ ν, i.e. |µa| =
|µ ∧ νa|.

Proof. (i): Suppose for contradiction that there are two contracts x 6= y with xA = yA = i
and a, b ∈ O such that both x ∈ µ ∧ νa and y ∈ µ ∧ νb. Then x ∈ Ca(µa ∪ νa) and
y ∈ Cb(µb∪ νb). Then a points to x and b points to y. Then (x ∈ µa and y ∈ νb) or (x ∈ µb

and y ∈ νa), and i must point to either x or y. Therefore, there is a student and a school
pointing to the same contract which contradicts the Pointing Lemma. In showing that
µ ∧ ν is individually rational, we have by definition Ca(µ ∧ νa) = µ ∧ νa.24 Furthermore,
µiRii and νiRii imply µ ∧ νiRii. Hence, µ ∧ ν ∈ IR.

(ii) and (iii): For counting purposes, in this proof we use the convention |µi| = 1 if µi 6= i
and |µi| = 0 if µi = i. First note that if µ ∧ νi = x but µi = i, then i blocks µ with ν:
by individual rationality, νi = xPii; and x ∈ Ca(µa ∪ νa) and substitutability of Ca imply
x ∈ Ca(µa ∪ {x}). Therefore, |µ ∧ νi| = 1 implies that |µi| = 1 and |νi| = 1. Hence,∑

i∈A

|µ ∧ νi| ≤
∑
i∈A

|µi|. (3)

By the Law of Aggregate Demand and µa ∪ νa ⊇ µa, |Ca(µa ∪ νa)| ≥ |Ca(µa)|. Therefore,∑
a∈O

|µ ∧ νa| ≥
∑
a∈O

|µa| (4)

Note that for any assignment λ we have∑
i∈A

|λi| =
∑
a∈O

|λa|. (5)

Combining the three equations yields that
∑

i∈A |µ ∧ νi| =
∑

i∈A |µi|. Since |µ ∧ νi| = 1
implies that |µi| = 1, it must also be that |µi| = 1 implies that |µ∧νi| = 1. Similarly, since
|µ∧ νa| ≥ |µa| for every school a and

∑
a∈O |µ∧ νa| =

∑
a∈O |µa|, it must be that for every

school a, |µa| = |µ ∧ νa|.
24Note that substitutability and LAD of Ca imply IRC: for all X ⊆ Y , if Ca(Y ) ⊆ X, then Ca(X) =

Ca(Y ).
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An immediate corollary of Lemma 4’ is our version of the Rural Hospitals Theorem for
the assignment with contracts setting.

Corollary 1’. (Rural Hospitals Theorem) Let µ and ν be two individually rational assign-
ments which do not block each other. Then

(i) for any school a, |µa| = |νa|; and

(ii) for any student i, µi = i if and only if νi = i.

Proof. By Lemma 4’, |µa| = |µ ∧ νa| = |νa| (which implies (i)), and if µi 6= i, then
µ ∧ νi 6= i. Let (µi)O = a. If νi = i, then by individual rationality of µ and ν, we have
µiPii, and by Lemma 4’, µ∧ νi = µi. Thus, µi ∈ Ca(µa ∪ νa) and by substitutability of Ca,
µi ∈ Ca(νa ∪ {µi}), which implies that i blocks ν with µ, a contradiction.

Lemma 4’ allows us to strengthen the Pointing Lemma.

Corollary 2’.(Strong Pointing Lemma) Let µ and ν be two individually rational assign-
ments which do not block each other.

(i) If a student is assigned a contract under either µ or ν, then she points to a contract
and one school points to a contract which is associated with her.

(ii) For any school a, a points to |µa| = |νa| contracts and |µa| = |νa| students point to
contracts associated with a.

Proof. (i): Consider a student i who is assigned a contract under either µ or ν. By µ, ν ∈
IR, i points to one contract by strict preferences. By (ii) of Lemma 4’, µ ∧ νi 6= i.
Without loss of generality, µ ∧ νi = µi and (µi)O = a. Since µi ∈ Ca(µa ∪ νa), a points to
µi. Two schools cannot point to two contracts associated with i, or else we would violate
the Pointing Lemma.
(ii): This follows from the same counting exercise as in the proof of Lemma 4’. If some
school a had fewer than |µa| students pointing to contracts associated with a, then some
school b would have to have more than |µb| students pointing to contracts associated with b.
Then b would have to point to one of these contracts which would contradict the Pointing
Lemma.

We have already established that if we reassign each contract to the school which is
pointing to it that this results in a well-defined assignment. We now show that reassigning
each student to the contract she is pointing to is also a well-defined assignment. We refer
to this assignment as µ ∨ ν.

Definition 6’. Let µ and ν be two individually rational assignments which do not block
each other. Define the assignment µ ∨ ν as follows: for all i ∈ A, µ ∨ νi = maxPi

{µi, νi}.

Lemma 5’. Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν is an individually rational assignment.
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Proof. First, we show that for every school a, Ca(µ ∨ νa ∪ µa) = µa (and symmetrically
that Ca(µ ∨ νa ∪ νa) = νa). Suppose for contradiction that Ca(µ ∨ νa ∪ µa) 6= µa. Since
µ is individually rational, we have Ca(µa) = µa. By the Law of Aggregate Demand,
|Ca(µ∨νa∪µa)| ≥ |µa|, so if Ca(µ∨νa∪µa) 6= µa, there must exist x ∈ Ca(µ∨νa∪µa) such
that x /∈ µa. Let xA = i. Therefore, µ ∨ νi = x and νi = x. In words, since µ ∨ νi = x, i
prefers νi = x to µi. Since x ∈ Ca(µ∨ νa∪µa), by substitutability of Ca, x ∈ Ca(µa∪{x}).
Therefore, i blocks µ with ν which is a contradiction.

Second, we prove the lemma. By construction, each student is assigned only one con-
tract, and by individual rationality of µ and ν we have µ ∨ νiRii. We must show that for
every school a, Ca(µ∨ νa) = µ∨ νa. By definition, Ca(µ∨ νa) ⊆ µ∨ νa. Suppose µ∨ νi = x
and xO = a. Assume without loss of generality that µi = x. We have already shown that
Ca(µ ∨ νa ∪ µa) = µa. Since x ∈ µa, x ∈ Ca(µ ∨ νa ∪ µa). Therefore, by substitutability of
Ca and x ∈ µ ∨ νa, x ∈ Ca(µ ∨ νa).

Lemma 6’. (Generalized Decomposition Lemma) Let µ and ν be two individually rational
assignments which do not block each other, and let i be a student such that µi 6= νi. Student
i chooses contract x if and only if school a = xO rejects x. Formally, µ ∨ νi = x if and
only if x /∈ µ ∧ νa = Ca(µa ∪ νa).

Proof. Suppose that µi 6= νi and without loss of generality assume that i points to µi = x,
and xO = a. If x is not rejected by a (x ∈ µ∧ νa), then a points to x. This contradicts the
Weak Pointing Lemma which says that a student and a school cannot point to the same
contract. Similarly, suppose that µi = x but that school a rejects x (x 6∈ µ ∧ νa). Then
school a does not point to x. By the Strong Pointing Lemma and since a school and a
student cannot point to the same contract, it follows that i points to µi = x.

B.2 Lattice Theorem

The operator π : 2IR → 2IR is defined in the same way as in the main text, and its
properties carry over without change, namely Lemma 7 and Lemma 8, and that there
exists n such that (1) Sn ⊆ π(Sn) and (2) Sn = π2(Sn).

As a reminder, we defined S0 = ∅ (and thus, π(∅) = IR), and in general let Sk =
π2(Sk−1) and Bk = π(Sk). Since π2 is increasing, eventually Sn = Sn+1 for some n. The
two key properties of Sn are (1) Sn ⊆ π(Sn) (for any two assignments µ, ν ∈ Sn, µ and
ν do not block each other); and (2) Sn = π2(Sn) (if µ 6∈ Sn, then µ is blocked by an
assignment in π(Sn)).

The following result from Blair (1988) will be useful.25

Lemma 15 (Blair 1988, Proposition 2.3). For all X, Y ∈ 2X and all a ∈ O, Ca(X ∪ Y ) =
Ca(Ca(X) ∪ Y ).

25For completeness, we include its proof.
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Proof. Let x ∈ Ca(X ∪ Y ). If x ∈ Ca(X) ∪ Y , then by substitutability of Ca we have x ∈
Ca(Ca(X)∪Y ). If x /∈ Ca(X)∪Y , then x ∈ X\Ca(X). But this contradicts substitutability
of Ca as x ∈ Ca(X ∪Y ) and x ∈ X imply x ∈ Ca(X). Thus, Ca(X ∪Y ) ⊆ Ca(Ca(X)∪Y ).

Because Ca(X) ⊆ X, LAD implies |Ca(X∪Y )| ≥ |Ca(Ca(X)∪Y )|. Hence, Ca(X∪Y ) =
Ca(Ca(X) ∪ Y ).

We define the following partial ordering over assignments:

µ ≥ ν if for every school a ∈ O,Ca(µa ∪ νa) = νa (6)

Lemma 9’. Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν ≥ µ ≥ µ ∧ ν.

Proof. Let a ∈ O. By definition, µ ∧ νa = Ca(µa ∪ νa). Therefore:

Ca(µa ∪ (µ ∧ νa)) = Ca(µa ∪ Ca(µa ∪ νa))
= Ca(µa ∪ µa ∪ νa)
= Ca(µa ∪ νa)
= µ ∧ νa

where the second equality follows from Lemma 15. Therefore, µ ≥ µ ∧ ν (and of course,
by symmetry, ν ≥ µ ∧ ν).

In the proof of Lemma 5’ we demonstrated that for every school a, Ca(µ ∨ νa ∪ µa).
Therefore, by definition, µ ∨ ν ≥ µ.

Lemma 10’. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. For any µ, ν ∈ S,
µ ∨ ν ∈ S and µ ∧ ν ∈ S. In particular, S with partial order ≥ is a lattice.

Proof. Let B = π(S). By assumption, S ⊆ B and S = π(B). Therefore, µ and ν are
not blocked by any assignment in B, and in particular, µ and ν do not block each other.
We have already shown that µ ∨ ν and µ ∧ ν are well-defined assignments. Furthermore,
by individual rationality of µ and ν and (ii) of Lemma 4’, µ ∧ νiRii for all i ∈ A, and by
definition, Ca(µ∧νa) = Ca(µa∪νa) = µ∧νa. Thus, µ∧ν ∈ IR. By Lemma 5’, µ∨ν ∈ IR.
All that remains is to show that µ ∨ ν and µ ∧ ν are not blocked by any assignment in B.

Suppose for contradiction that i blocks µ ∧ ν with λ ∈ B. By individual rationality of
µ ∧ ν, we have λi 6= i, say λi = x and xO = b. If µ ∧ νi = i, then by (ii) of Lemma 4’ we
have µi = i and νi = i. But then by substitutability of Cb and x ∈ Cb(µ ∧ νb ∪ {x}) =
Cb(µb ∪ νb ∪ {x}), we have x ∈ Cb(µb ∪ {x}). Because x /∈ µb, now i blocks µ with λ, a
contradiction to µ ∈ S. Thus, µ ∧ νi 6= i, say µ ∧ νi = y and without loss of generality,
assume µi = y and yO = a. Since i blocks µ ∧ ν with x,

x ∈ Cb(µ ∧ νb ∪ {x}). (7)

Note that for any sets of contracts X and Y , Cb(X ∪ Y ) = Cb(Cb(X) ∪ Y ) (Lemma 15).
Therefore,

Cb(Cb(µb ∪ νb) ∪ {x}) = Cb(µb ∪ νb ∪ {x}). (8)
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By definition, µ ∧ νb = Cb(µb ∪ νb). Thus, by (7), x ∈ Cb(Cb(µb ∪ νb) ∪ {x}). By (8),
x ∈ Cb(µb ∪ νb ∪ {x}). By substitutability of Cb, x ∈ Cb(µb ∪ {x}). Therefore, xPiµi,
x ∈ Cb(µb ∪ {x}), and λi = x where λ ∈ B = π(S). Therefore, i blocks µ with λ implying
that µ 6∈ π(B). This is a contradiction as µ ∈ S = π(B).

The proof for µ∨ν is similar. Suppose for contradiction that µ∨ν is blocked by student i
with assignment λ ∈ B where λi = x and xO = a. We first show that there exists a contract
y ∈ µ ∨ νa which is rejected when a chooses from µ ∨ νa ∪ {x}, i.e. y /∈ Ca(µ ∨ νa ∪ {x}).
We have already shown that µ ∧ ν is not blocked by i and λ (or by any other student);
therefore, x 6∈ Ca(µ ∧ νa ∪ {x}). Otherwise, i would block µ ∧ ν since λiPiµ ∨ νi implies
λiPiµ ∧ νi.

Because µ ∧ ν ∈ IR, we have Ca(µ ∧ νa) = µ ∧ νa. Thus, by LAD and substitutability
of Ca, we have Ca(µ ∧ νa ∪ {x}) = Ca(µa ∪ νa ∪ {x}) = µ ∧ νa. As a reminder, |µa| =
|µ ∧ νa| = |νa| = |µ ∨ νa|. By the Law of Aggregate Demand and µ ∨ ν ∈ IR,

|µ ∨ νa| = |Ca(µ ∨ νa)| ≤ |Ca(µ ∨ νa ∪ {x})| ≤ |Ca(µa ∪ νa ∪ {x})| = |µ ∧ νa| = |µ ∨ νa|.

Now all these inequalities become equalities. Because x ∈ Ca(µ ∨ νa ∪ {x}) and x /∈
Ca(µa∪νa∪{x}), there must exist y ∈ µ∨νa \Ca(µ∨νa∪{x}). Without loss of generality,
y ∈ µa and yA = j. Then x 6∈ Ca(µa ∪ {x}) or else i would block µ with λ. Because µ is
individually rational, Ca(µa) = µa. Therefore, by LAD and substitutability of Ca,

Ca(µa ∪ {x}) = µa. (9)

Note that

Ca(µa ∪ (µ ∨ νa) ∪ {x}) = Ca(Ca(µa ∪ µ ∨ νa) ∪ {x})
= Ca(µa ∪ {x})
= µa

where the first equality follows from Lemma 15, the second equality follows from Lemma 2’
(µ∨ ν ≥ µ and therefore, Ca(µa ∪ µ∨ νa) = µa), and the third inequality follows from (9).
However, y ∈ µa and therefore y ∈ Ca(µa∪(µ∨νa)∪{x}). This contradicts substitutability
of Ca as y 6∈ Ca(µ ∨ νa ∪ {x}) but µ ∨ νa ∪ {x} ⊆ µa ∪ (µ ∨ νa) ∪ {x}.

Lemma 11’. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. Let µI be the
student-optimal assignment in S and let µO be the school optimal assignment in S. For
every λ ∈ π(S) and every student i, µI

i Ri λi Ri µ
O
i .

Proof. Let S be a set that satisfies (1) and (2) and let B = π(S). We say that contract x
is possible for i if there exists λ ∈ B such that λi = x. Let

B(i) = {x ∈ Xi | there exists λ ∈ B such that λi = x}

denote the set of possible contracts for student i. Let P̂i be defined as follows: (i) for all
x ∈ B(i) and y ∈ Xi\B(i), xP̂iiP̂iy, (ii) for all x, y ∈ B(i), xP̂iy ⇔ xPiy and (iii) for all
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x, y ∈ Xi\B(i), xP̂iy ⇔ xPiy. Now we introduce a natural modification of DA which we
call rDA (restricted DA): when we run DA we only allow a student to propose possible
contracts and we use the profile (P̂i)i∈N for students to propose contracts.26 Formally, the
rDA is defined as follows:

Step 1: Each student i proposes his most P̂i-preferred acceptable contract. Let X1
a denote

the proposed contracts received by school a. Then school a tentatively accepts Ca(X
1
a) and

rejects X1
a\Ca(X

1
a).

Step t: Any student i rejected in Step t − 1 proposes his most P̂i-preferred acceptable
contract among the ones which were not yet rejected (if there is no acceptable contract left
for i, then i does not make any proposal). Let X t

a denote the set of proposed contracts
received by school a and the ones tentatively accepted by a in the previous step. Then
school a tentatively accepts Ca(X

t
a) and rejects X t

a\Ca(X
t
a).

Stop: There are no rejected contracts or all rejected students have applied to all acceptable
contracts. Then the tentative acceptances become final assignments, which we denote by
µI .

Note that µI is stable under P̂ , which implies µI ∈ S.
We establish the result by showing that no contract is rejected under rDA. This implies

that for each student i, µI
i is i’s favorite possible contract (or equivalently, µI

i is i’s most P̂i-
preferred contract). If a contract was rejected, then there would have to be a last contract
rejected. Call this contract x. Let xA = i and xO = a, i.e. school a rejected x. Then
x must be possible for i, so there exists a ν ∈ B such that νi = x. Because ν ∈ B and
µI ∈ S, ν and µI do not block each other. Thus, by the Rural Hospitals Theorem, µI

i 6= i.
Let µI

i = y and yO = b.
Let Y = {z ∈ Xb| for j = zA, z R̂j µ

I
j} (in words, Y is the set of contracts with b which

are possible for some student j and weakly preferred by j to her assignment under rDA).
By construction and stability of µI under P̂ , µI

b = Cb(Y ). When i proposes contract y to b,
no contract is rejected (since x is the last contract rejected). Therefore, by substitutability
of Cb,

Cb(Y \ {y}) = µI
b \ {y} . (10)

Since µI and ν do not block each other, by Lemma 6’, ν ′ = µI ∨ ν is an individually
rational assignment. By the Strong Pointing Lemma’, |ν ′b| = |µI

b | (ν ′b is the set of students
pointing to contracts associated with b). However, this leads us to our contradiction.
By the definition of pointing, ν ′b ⊆ Y . Since νiPiµ

I
i , i points to x, not to any contract

associated with b, i.e. µI
i /∈ ν ′b. Therefore, ν ′b ⊂ Y \

{
µI
i

}
; consequently, by the LAD and

(10), |Cb(ν
′
b)| < |µI

b |. But ν ′ is an individually rational assignment meaning Cb(ν
′
b) = ν ′b.

Since |ν ′b| = |µI
b |, |Cb(ν

′
b)| = |µI

b | which is a contradiction.
Therefore, we conclude that no contract is rejected under rDA. Since for all λ ∈ B and

all i ∈ A, µI
i R̂iλi and λiR̂ii. It now follows that µI ∈ S and µI

iRiλi for all i ∈ A.

26Since choice functions satisfy substitutability and LAD, the cumulative offer process and DA coincide.
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Similarly, when under school proposing rDA, a school a can only propose contract x if
x is possible for a, which we denote by B(a) = {x ∈ Xa |x ∈ µa for some µ ∈ B}. Then
the school proposing rDA is defined as follows:

Step 1: Each school a proposes all contracts belonging to Ca(B(a)). Let X1
i denote the

proposals received by student i. Then student i tentatively accepts the P̂i-preferred ac-
ceptable contract from X1

i and rejects the rest (and i rejects all contracts if all proposed
contracts are unacceptable).

Step t: Let Rt−1
a denote the contracts associated with school a which were rejected in a

step before Step t. Then school a proposes all contracts belonging to Ca(B(a)\Rt−1
a ). Let

X t
i denote the proposals received by student i. Then student i tentatively accepts the

P̂i-preferred acceptable contract from X t
i and rejects the rest (and i rejects all contracts if

all proposed contracts are unacceptable).

Stop: There is no rejected contract. Then the tentative acceptances become final assign-
ments, which we denote by µO.

Again, note that µO is stable under P̂ , which implies µO ∈ S.
By an analogous argument, we show that no contract is rejected under the school-

proposing rDA. Let µO be the outcome of school proposing rDA. Suppose for contradiction
that some contract is rejected: let student i be rejecting contract x, xO = a, and be this
the last time that a student rejects a contract. Let student i reject x at Step t. Then x ∈
Ca(B(a)\Rt−1

a ). Since µO
a ⊆ B(a)\Rt−1

a , substitutability of Ca implies x ∈ Ca(µ
O
a ∪ {x}).

We first show that a proposes another contract after i rejects x. Since a was allowed to
propose x, there exists a ν ∈ B such that νi = x. Since ν and µO do not block each other
(because µO ∈ S), by the Rural Hospitals Theorem |µO ∧ νa| = |µO

a |. Since x ∈ νa \µO
a and

x ∈ Ca(µ
O
a ∪ {x}), there must exist y ∈ µO

a \ Ca(µ
O
a ∪ {x}). By substitutability of Ca and

µO
a ⊆ B(a)\Rt−1

a , we have y /∈ Ca(B(a)\Rt−1
a ). In words, a does not propose y until after

i has rejected x. Note that if yA = j was holding onto a proposal then i’s rejection of x
would not be the last rejection. Therefore, no other school proposed a contract associated
with j, and in particular, z /∈ Cb(µ

O
b ∪ {z}) for any school b ∈ O\{a} and z ∈ Xj ∩ Xb.

Therefore, when we apply the pointing to µO and ν, school (νj)O does not point to νj.
However, we have already concluded that school a does not point to y (if y ∈ Ca(νa ∪ µO

a ),
then by x ∈ νa and substitutability of Ca, we have y ∈ Ca(µ

O
a ∪ {x}), a contradiction),

so neither a nor (νj)O point to a contract associated with j. This contradicts Corollary 2’
which says that one school points to a contract associated with j.

Because for all λ ∈ B and all i ∈ A, λiR̂iµ
O
i and λiR̂ii, now it follows that µO ∈ S and

λiRiµ
O
i for all i ∈ A.

B.3 Existence and Uniqueness

We are now ready to prove the main theorem. As a reminder, we set S0 = ∅, S1 = π2(∅),
Sk = π2(Sk−1) and Bk = π(Sk). We defined S as the first fixed point of our construction,

34



i.e. S = π2(S). Let B = π(S). The following two facts will be useful for the proof of the
uniqueness of a legal set (which is the main result).

Lemma 16. (i) For an assignment µ and a school a, let

V (µ, a) = {x ∈ Xa| for some i ∈ A, xRiµi and ∃ν ∈ B such that νi = x} .

If µ ∈ S, then Ca(V (µ, a)) = µa.

(ii) If µ ∈ S, µjPjx and x is possible for j (where xO = a), then x ∈ Ca(µa ∪ {x}).

Proof. In showing (i), note that S ⊆ IR and Ca(µa) = µa. By µa ⊆ V (µ, a) and LAD,
|Ca(V (µ, a))| ≥ |µa|. If Ca(V (µ, a)) 6= µa, then there exists y ∈ Ca(V (µ, a))\µa. For
student yA = i we have the following: yPiµi and for some ν ∈ B, νi = y; if y ∈ Ca(µa∪{y}),
then i blocks µ with ν, a contradiction; thus by LAD, Ca(µa∪{y}) = µa. But µa ⊆ V (µ, a)
and y ∈ Ca(V (µ, a)) would contradict substitutability of Ca.

In showing (ii), since x is possible, there exists λ ∈ B such that λj = x. By construction,
µ and λ do not block each other. Therefore, µ∧λ is well defined. Moreover, µ∧λj = x since
µjPjλj. Therefore, x ∈ Ca(µa∪λa). Thus, by substitutability of Ca, x ∈ Ca(µa∪{x}).

Theorem 1’. There exists a legal set of assignments.

Proof. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) S = π2(S).27 We show that
S = π(S) = B. Then by Lemma 8, S is a legal set of assignments.

Suppose by contradiction that there exists an assignment ν ∈ B \ S. Since ν 6∈ S, ν is
blocked by some student i with assignment µ ∈ B. Let x = µi. Note that there does not
exist φ ∈ S such that φi = x as otherwise, i would block ν with φ in which case ν /∈ B.

Thus, by Lemma 11’, µI
i Pi x Pi µ

O
i . For student i, define the “legal” contracts for i as

S(i) = {z ∈ Xi | ∃φ ∈ S such that φi = z} .

Among i’s legal contracts that she prefers to x, let y be her least favorite, i.e. y ∈ S(i),
yPix, and there does not exist z ∈ S(i) such that yPizPix. Similarly, let u be i’s favorite
school among her legal contracts that she likes less than x, i.e. u ∈ S(i), xPiu, and there
does not exist z ∈ S(i) such that xPizPiu. By Lemma 11’, y and u are well-defined. Let
X

y
= {φ ∈ S|φi = y}. Note that if φ, φ′ ∈ Xy, then φ ∧ φ′i = y and therefore φ ∧ φ′ ∈ Xy.

Thus, Xy has a well-defined minimum element (with respect to students’ preferences). Let

µ := min
>
X

y
(11)

Now we define the students’ favorite assignment that is worse than µ. Let

X = {φ ∈ S |µ 6= φ and µiRiφi for all i ∈ A} .
27Recall that the existence of S is assured because π2 is an increasing function and for some n we have

Sn = π2(Sn). As we have shown, Sn ⊆ π(Sn) holds as well.
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Note that by our choice of y and u we have for all φ ∈ X, y = φi or uRiφi. If y = φi, then
φ ∈ Xy

, a contradiction to φ 6= µ and µjRjφj for all j ∈ A. Thus, for all φ ∈ X, uRiφi.
Now note that if φ, φ′ ∈ X, then φ ∨ φ′ ∈ X because µi = yPiφ ∨ φ′i. Therefore, X has a
well-defined maximum assignment. Let

µ := max
>

X (12)

As shown already above, we have uRiµi
. If u 6= µ

i
, then by u ∈ S(i), there exists φ ∈ S

such that φi = u. Because S is a lattice and yPiu, we have φ∧µ ∈ S and φ∧µi = u. Since
µjRjφ ∧ µj for all j ∈ A and µ 6= φ ∧ µ, we have φ ∧ µ ∈ X. Hence, we must have µ

i
= u.

Let xO = a, yO = b and uO = c.

Claim 1: µjRjµj
for all j ∈ A and consequently for every school d, V (µ, d) ⊆ V (µ, d).

Claim 1 follows from our construction of µ and µ: we have µjRjµj
for all j ∈ A. Thus,

V (µ, d) ⊆ V (µ, d) for all d ∈ O. In particular, µ ∈ X and for every φ ∈ X, µjRjφj for all
j ∈ A.

Since µiPix = µi, we have µ∧µi = x. In particular, x ∈ Ca(µa∪µa) and by substitutabil-
ity of Ca, x ∈ Ca(µa ∪ {x}). By the Rural Hospitals Theorem, |µa| = |Ca(µa ∪ µa)|. Thus,
by LAD, |Ca(µa ∪ {x})| = |µa|, and there exists a unique contract t1 ∈ µa \ Ca(µa ∪ {x}).
Let (t1)A = r1.

We show µr1 6= µ
r1

: otherwise by definition, µr1 = µ
r1

= t1. But then µ ∧ µ
r1

= t1 and

t1 ∈ Ca(µa ∪ µa
). If x ∈ Ca(µ∧ µa

∪ {x}), then by µ∧ µ = µ, we have that i blocks µ with
µ, a contradiction to µ ∈ S. Thus,

x /∈ Ca(µ ∧ µa
∪ {x}) = Ca(Ca(µa ∪ µa

) ∪ {x}) = Ca(µa ∪ µa
∪ {x}),

where the first equality follows from the definition of µ∧µ and the second one from Lemma
15. Thus, x /∈ Ca(µa ∪ µa

∪ {x}) and t1 ∈ Ca(µa ∪ µa
). Now by substitutability of Ca and

the LAD, we must have t1 ∈ Ca(µa∪µa
∪{x}). This is a contradiction to t1 /∈ Ca(µa∪{x})

and substitutability of Ca. Thus, we must have µr1 6= µ
r1

and µr1Pr1µr1
.

Then t1 ∈ µa \Ca(µa ∪ {x}) and in words, t1 is a contract a would reject if µa ∪ {x} is
proposed.

We define an iterative procedure that is a variation of the vacancy chains that is inherit
in the Deferred Acceptance algorithm (when students propose sequentially à la McVitie
and Wilson). For each student l, define all contracts that l strictly prefers to µl to have
been rejected. Formally, letting for student l,

Ō(l) = {z ∈ Xl | z ∈ B(l) and µlRlz}.

Then student l uses the preference P̄l defined by (i) for all v, w ∈ Ō(l), vP̄lw ⇔ vPlw and
(ii) for all v ∈ Ō(l) and all w ∈ O\Ō(l), vP̄llP̄lw. Let school a reject contract t1. This
starts a vacancy chain. We only allow student l to propose contracts which are possible
for l. Whenever a student is rejected, she proposes her favorite contract that has not been
rejected. In other words, we use the profile (P̄l)l∈A for the vacancy chain (starting first
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with rejecting t1 by a). Each time a school receives a new application, it chooses among
all the contracts that have ever applied to it.

Claim 2: In the vacancy chain, no student j proposes a contract worse than µ
j
.

If not, then let l be the first student in the vacancy chain such that µ
l

is rejected. Let
d = (µ

l
)O and let Y be all contracts who have been proposed to d. For every z ∈ Y with

zA = j, zRjµj
since l is the first student rejected by her assignment under µ. Thus,

Y ⊆ V (µ, d).

By (i) of Lemma 16, Cd(V (µ, d)) = µ
d
. Therefore, by µ

l
∈ µ

d
and substitutability of Cd,

µ
l

cannot be rejected by d, a contradiction.

Note that Claim 2 also holds for student r1 because µr1Pr1µr1
.

In the above definition of the vacancy chain, if a student j ever proposes a contract
associated with school a, then we pause to make sure that school a is better off despite
the fact that a did not voluntarily reject t1. For now, assume that student j proposes zj
such that (zj)O = a in the vacancy chain. By Claim 2, zjRjµj

. By (i) of Lemma 16 and

LAD, a chooses exactly |µ
a
| = |µa| contracts (because every student proposing a contract

associated with a, the contract then belongs to V (µ, a)). Prior to j’s proposal of zj, a is
holding onto |µa| − 1 proposals (because we rejected t1 ∈ µa). If we allowed a to choose
amongst t1, zj, and the |µa| − 1 proposals she is holding, then she would wish to hold onto
|µa| proposals and reject one contract. Call this contract t2 and (t2)A = r2. If t2 = t1 (the
contract we already rejected), then we stop (because we rejected the “right” contract in
first place). Otherwise, school a rejects t2 and we continue. Note that in this case, the new
proposed contract zj did not come from r1, or else (for j = r1) we have µj = t1Pjzj and by
(ii) of Lemma 16, zj ∈ Ca(µa∪{zj}), and a would have wanted to reject t1 by construction.
Set j = j1 and j1 proposed zj1 . Continue the vacancy chain with t2 as the rejected contract.
In general, whenever a student jm proposes a contract zjm associated with a, we check to
see if t1 ∈ Ca(µa∪{zj1 , . . . , zjm}). If t1 6∈ Ca(µa∪{zj1 , . . . , zjm}), then we stop (because we
rejected the “right” contract t1 in first place). If t1 ∈ Ca(µa ∪ {zj1 , . . . , zjm}), then jm 6= r1
(as otherwise (ii) of Lemma 16 and substitutability would be violated by t1 /∈ Ca(µa∪{x})),
and a would prefer to reject one of her current proposals and keep t1. We allow a to reject
this contract and continue.

The process ends when t1 6∈ Ca(µa ∪ {zj1 , . . . , zjm}) for some m or when a student’s
possible contracts all have been rejected or when a school accepts the application without
rejecting one of its current contracts. Let φ be the assignment that results from this process.
By Claim 2, we have for all j ∈ A, φjRjµj

.

Claim 3: The vacancy chain ends with a proposed contract associated with a.
There are only three ways for the vacancy chain to end: (1) a student proposes a

contract associated with a, (2) a student proposes a contract associated with school b 6= a
and b accepts the contract without rejecting any contract, and (3) a student’s possible
contracts are all rejected.

We show that (3) does not occur. If student l is part of the vacancy chain, then
µl 6= l. Therefore, µ

l
6= l by the Rural Hospitals Theorem. Since by Claim 2, φlRlµl

,
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we have φl 6= l. Therefore, the vacancy chain does not end with a student’s possible
contracts all having been rejected. Similarly, (2) does not occur: for every school b 6= a,
|µb| = |µb

|. Since φjRjµj
for all j ∈ A, we have V (φ, b) ⊆ V (µ, b) (meaning that b has more

contracts to choose from under µ as the students are less happy with their assignment).
By (i) of Lemma 16, we have Cb(V (µ, b)) = µ

b
. But then |φb| > |µb

| would violate the
Law of Aggregate Demand for b to accept a contract without rejecting another (because
φb ⊆ V (µ, b)). Therefore, (1) must occur and the vacancy chain can only conclude when a
student l proposes a contract associated with a.

Claim 4: φ ∈ S.
For any school b 6= a, school b receives a better set of contracts under φ than under µ as

it has weakly more contracts to choose from. Mathematically, Cb(φb∪µb) = φb. School a is
the only school which did not voluntarily reject all of its contracts as a did not voluntarily
reject t1. However, the key point is that the vacancy chain must stop with an application
to a, and we only stop after an application to a if a now wants to reject t1. Therefore, a is
made strictly better off by the vacancy chain. Consider a student j, contract zj and school
b = (zj)O such that zj is possible for j and zjPjφj. If zjPjµj, then zj 6∈ Cb(µb ∪ {zj}) or
else µ would be blocked. Since b did not choose zj before, b does not choose zj now that
she has weakly more contracts to choose from. If µjRjzj then zj was rejected by b during
the vacancy chain and j is not able to block φ with b and contract zj.

Claim 5: xPiφi

Since φ ∈ S, we have φi 6= x. Suppose by contradiction that φiPix. By our choice of
y and u and φ ∈ S, this can only happen if y was never rejected by school b. Therefore,
y = φi = µi. Because the vacancy chain stops with an application to a where t1 is rejected,
we must have t1 = µr1Pr1φr1 . By Claim 4, φ ∈ S and thus, φ ∈ Xb. But now this is a

contradiction as µ = min>X
b
.

Now Claim 5 yields the contradiction: student i proposed in the vacancy chain to x
before proposing to φi (because x ∈ Ō(i)). But when i proposed x, the vacancy chain must
stop as t1 ∈ µa\Ca(µa ∪ {x}), x ∈ Ca(µa ∪ {x}), and thus when jm = i, we must have
t1 /∈ Ca(µa ∪ {zj1 , . . . , zjm}) as otherwise substitutability of Ca is violated. But then we
must have x = φi which contradicts Claim 5.

The proof of Theorem 2 carries over unchanged to the assignment with contracts frame-
work, i.e. there exists a unique legal set of assignments.

Theorem 2’. There exists a unique legal set of assignments.

Since this set is a lattice, there exists a student-optimal legal assignment. Using Lemma
11’ and the same logic as in Proposition 1, again it follows that this assignment is efficient
among all individually rational assignments.

Proposition 1’. The student-optimal legal assignment µI is efficient.
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C General EADA

Below we provide an algorithm for calculating the student-optimal legal assignment. Note
that this is the first formulation of Kesten’s EADA for the framework of matching with
contracts.

The following notion will turn out to be important.

Definition 7’. Let µ ∈ IR and x ∈ µ. Then contract x is irrelevant for µ if for xO = a
we have

Ca({y ∈ Xa|yRjµj where yA = j}\{x}) ⊆ µa.

In words, contract x is irrelevant for µ if the school a associated with x, chooses from
the set of contracts, which students weakly prefer to their assignment, excluding x, a subset
of the contracts assigned to a under µ. Then it is irrelevant whether contract x is present,
because from the set of contracts with a, which are weakly preferred by some students to
their assignment, school a does not choose any new ones.

Given assignment µ and student i, we say that student i is Pareto improvable if
there exists ν ∈ IR such that νiPiµi and for all j ∈ A, νjRjµj. This simply means that
there exists a Pareto improvement over µ where i strictly prefers his assigned contract to
the one from µ.

The following result show some basic facts of irrelevant contracts.

Lemma 12’. Let µ be the DA assignment.

(i) There always exists a contract which is irrelevant for µ.

(ii) If contract x is irrelevant for µ, then xA is not Pareto improvable.

Proof. (i): If some student is unassigned, then the empty contract is irrelevant as µ ∈ IR
and only students weakly prefer being unassigned to their assignment if they are unassigned.
Thus, suppose that µi 6= i for all i ∈ A. Let x ∈ µ be one of the last contracts assigned in
DA, and let xA = i and xO = a. Note that any contract belonging to

Wa = {y ∈ Xa|yRjµj where yA = j}

must have been proposed in DA. If x is not irrelevant for µ, then Ca(Wa\{x})\µa 6= ∅. Let
z ∈ Ca(Wa\{x})\µa. Then z was proposed at some point in DA, and was rejected at some
later step. At the later step school a was facing a set of proposals Ja ⊆ Wa\{x} (because
x is the last accepted contract and no contract is rejected when x is proposed), but then
this is a contradiction to substitutability of Ca as z /∈ Ca(Ja), but z ∈ Ca(Wa\{x}) and
Ja ⊆ Wa\{x}. Therefore, contract x is irrelevant for µ.
(ii): Suppose to the contrary, i.e. xA is Pareto improvable. Let ν ∈ IR Pareto improve µ,
i.e. νiRiµi for all i ∈ A. We show that for all a ∈ A,

|νa| = |µa|. (13)
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For school a, let Wa = {y ∈ Xa|yRjµj where yA = j}. Since µ is stable and Ca is
substitutable, we have Ca(Wa ∪µa) = µa. Suppose there exists b ∈ O such that |νb| > |µb|.
Since νiRiµi for all i ∈ A, we have νb ⊆ Wb ∪ µb. Because ν is individually rational,
we have Cb(νb) = νb. But now this contradicts LAD as |νb| > |µb|, νb ⊆ Wb ∪ µb, and
Cb(Wb ∪ µb) = µb. Now for all a ∈ O, |νa| ≤ |µa|. Because for all i ∈ A, µi 6= i implies
νi 6= i, this yields (13).

Let xA = i. Because i is Pareto improvable, say with ν ∈ IR, we have νi 6= µi. If
µi = i, then i is not Pareto improvable by (13) and the fact that for all j ∈ A, µj 6= j
implies νj 6= j. Thus, µi 6= i, and say xO = a. Then x ∈ µa\νa and by |µa| = |νa|, there
exists y ∈ νa\µa. Since ν is a Pareto improvement over µ, we have νa ⊆ Wa ∪ µa. Since
x /∈ νa, we have νa ⊆ (Wa ∪ µa)\{x}. Because x is irrelevant for µ and x ∈ µa, we have

Ca((Wa ∪ µa)\{x}) ⊆ µa\{x}.

By LAD and Ca(νa) = νa, |νa| ≤ |Ca((Wa ∪ µa)\{x})| ≤ |µa| − 1, which is a contradiction
to (13).

We will show that the algorithm below works for any choice functions satisfying sub-
stitutability and LAD. One could call this alternatively the “general Efficiency Adjusted
Cumulative Offer Process”.

Given Y ⊆ X , let YA = ∪y∈Y {yA} denote the set of students associated with some
contracts in the set Y .

The general Efficiency Adjusted Deferred Acceptance Mechanism (gEADA):
Round 0: Run DA for the problem P . Let µ0 denote the DA assignment, I0 = ∅ and
P 0 = P .
Round k: This round consists of two steps.

1. Let Ik = {x ∈ µk−1|x is irrelevant for µk−1}. If x ∈ Ik and xA = i, then let P k
i be

the preference for i where x is the only acceptable contract. If i /∈ (Ik)A, then let
P k
i = P k−1

i , and let P k denote the resulting profile.

2. Let µk denote the DA assignment obtained from P k.

Stop when (Ik)A = A.

We show that gEADA is well defined for assignment with contracts.

Lemma 13’.

(i) For all k ≥ 1, Ik−1 ⊆ Ik and µk Pareto dominates µk−1.

(ii) If A\(Ik−1)A 6= ∅, then Ik\Ik−1 6= ∅.
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Proof. (i): We proceed by induction. Obviously, I0 ⊆ I1. Then µ0 is stable under P 1.

Because choice functions satisfy substitutability and LAD, we have for all i ∈ A, µ1
iR

1
iµ

0
i .

Thus, by (ii) of Lemma 12’, for all x ∈ I1 with xA = i, we have µ1
i = µ0

i = x. Thus, µ1
iRiµ

0
i

for all i ∈ A.
Let k > 1. Then again, µk−1 is stable under P k. Because choice functions satisfy

substitutability and LAD, we have for all i ∈ A, µk
iR

k
i µ

k−1
i . Thus, by construction, for all

i ∈ (Ik−1)A, we have µk
i = µk−1

i . By (ii) of Lemma 12’, for all x ∈ Ik with xA = i, we have
µk
i = µk−1

i = x. Thus, µk
iRiµ

k−1
i for all i ∈ A, which is the desired conclusion.

It remains to show Ik−1 ⊆ Ik: by I0 ⊆ I1 and by the induction hypothesis we have
Ik−2 ⊆ Ik−1. Let x ∈ Ik−1. Then (using again the induction hypothesis) x is irrelevant
for µk−2. Thus, for xA = i, for P k−1, student i ranks x as the only acceptable contract.
Because µk−1 is a Pareto improvement of µk−2, we have for all a ∈ O,

W k−1
a = {y ∈ Xa|yRk−1

j µk−1
j where yA = j} ⊆ {y ∈ Xa|yRk−2

j µk−2
j where yA = j} = W k−2

a .

By (ii) of Lemma 12’ and x ∈ Ik−1, xA is not Pareto improvable and we have x ∈ µk−1.
Thus, W k−1

a \{x} ⊆ W k−2
a \{x}. By LAD,

|Ca(W
k−1
a \{x})| ≤ |Ca(W

k−2
a \{x})|.

Because x is irrelevant under µk−2, we have

Ca(W
k−2
a \{x}) ⊆ µk−2

a \{x}.

Because µk−1 Pareto improves µk−2, we have by (13), |µk−1
a | = |µk−2

a |. But then by sub-
stitutability of Ca, we have Ca(W

k−1
a \{x}) ⊆ µk−1

a . Therefore, x is irrelevant for µk−1 and
x ∈ Ik.
(ii): Note that if all students are assigned their most preferred contract under µk−1, then

Ik = µk−1 and (Ik)A = A. Otherwise, we have (Ik)A 6= A. But then some student is not
assigned his most preferred contract. Then the same argument as in the proof of (i) of
Lemma 12’ shows that the last accepted contract must be irrelevant (and this cannot be
one of the contracts proposed in the first step.).

The following captures the two key features of the gEADA algorithm: the output of
gEADA is efficient and it coincides with the student-optimal legal assignment. Thus, the
gEADA algorithm offers a polynomial algorithm to determine the student-optimal legal
assignment.

Theorem 3’.

(i) The gEADA assignment is efficient.

(ii) The output of gEADA algorithm coincides with the student-optimal legal assignment.
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Proof. Let η be the output of the gEADA algorithm.
(i): Suppose that η is not efficient, i.e. there exists ν ∈ IR such that νiRiηi for all i ∈ A
and ν 6= η. As in the gEADA algorithm, let P 0 = P and µ0 denote the DA assignment
for P 0. As η Pareto improves µ0, we have for all i ∈ A, νiRiηiRiµ

0
i . Let I0 denote the

contracts which are irrelevant for µ0. Then by (ii) of Lemma 12’, for any x ∈ I0, student
xA is not Pareto improvable. Thus, for all x ∈ I0 and xA = i, we have νi = ηi = µ0

i = x and
both I0 ⊆ ν and I0 ⊆ η. As in gEADA, let P 1 denote the profile such that for all i ∈ A, if
µ0
i ∈ I0, then µ0

i is the unique acceptable contract under P 1
i and otherwise P 1

i = Pi.
Now by induction, let k ≥ 1. Then we have both Ik−1 ⊆ ν and Ik−1 ⊆ η. As in

gEADA, let P k−1 denote the profile such that for all i ∈ A, if µk−1
i ∈ Ik−1, then µk−1

i is
the unique acceptable contract under P k−1

i and otherwise P k−1
i = P k−2

i . Let µk−1 denote
the DA assignment for P k−1 and Ik denote the set of contracts which are irrelevant for
µk−1. By construction, we have for all x ∈ Ik−1 where xA = i, νi = ηi = x. Since ν Pareto
improves η, η Pareto improves µk−1 and P k−1

i = P k−2
i for all i ∈ A such that µk−1

i /∈ Ik−1,
we obtain for all i ∈ A,

νiR
k−1
i ηi and ηiR

k−1
i µk−1

i .

Then by (ii) of Lemma 12’, for any x ∈ Ik, student xA is not Pareto improvable. Thus, for
all x ∈ Ik and xA = i, we have νi = ηi = µk−1

i = x and both Ik ⊆ ν and Ik ⊆ η. Now by
induction, we obtain ν = µ, which is a contradiction.
(ii): Because the student-optimal legal assignment is efficient, by (i) it suffices to show that
η is legal. Suppose that η is not legal. Then there exists α ∈ L such that α blocks η. Let ν
denote the student-optimal legal assignment in L. Because L is a lattice, for some j ∈ A,
we have νjRjαjPiηj. Thus, νjPjηj As in the gEADA algorithm, let P 0 = P and µ0 denote
the DA assignment for P 0. Obviously, µ0 ∈ L.

Let I0 denote the contracts which are irrelevant for µ0. As both ν and η Pareto improve
µ0, we have by (ii) of Lemma 12’, for any x ∈ I0, student xA is not Pareto improvable.
Thus, for all x ∈ I0 and xA = i, we have νi = ηi = µ0

i = x and both I0 ⊆ ν and I0 ⊆ η.
As in gEADA, let P 1 denote the profile such that for all i ∈ A, if µ0

i ∈ I0, then µ0
i is

the unique acceptable contract under P 1
i and otherwise P 1

i = Pi. Let µ1 denote the DA
assignment for P 1. Then by construction, it follows that µ1 ∈ L: if α ∈ L blocks µ1, then
some student i blocks µ1 with α. But then i /∈ (I0)A as νi = αi for all i ∈ (I0)A. Since µ1

Pareto improves µ0, then i blocks µ0 with α, a contradiction to µ0 ∈ L.
Let k ≥ 1. But then by induction we have both Ik−1 ⊆ ν and Ik−1 ⊆ η, and µk−1 ∈ L.

Let Ik denote the contracts which are irrelevant for µk−1. As both ν and η Pareto improve
µk−1, we have by (ii) of Lemma 12’, for any x ∈ Ik, student xA is not Pareto improvable.
Thus, for all x ∈ Ik and xA = i, we have νi = ηi = µk−1

i = x and both Ik ⊆ ν and Ik ⊆ η.
Again, as above it follows µk ∈ L.

Now by induction, we obtain ν = µ, which is a contradiction to the fact that there
exists j ∈ A such that νjPjηj.
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