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Abstract Top Trading Cycles is widely regarded as the preferred method of assign-
ing students to schools when the designer values efficiency over fairness. However,
Top Trading Cycles has an undesirable feature when objects may be assigned to more
than one agent as is the case in the school choice problem. If agent i’s most preferred
object a has a capacity of qa, and i has one of the qa highest priorities at a, then Top
Trading Cycles will always assign i to a. However, until i has the highest priority at
a, Top Trading Cycles allows i to trade her priority at other objects in order to receive
a. Such a trade is not necessary for i’s assignment and may cause a distortion in the
fairness of the assignment. We introduce two simple variations of Top Trading Cycles
in order to mitigate this problem. The first, Clinch and Trade, reduces the number of
unnecessary trades but is bossy and depends on the order in which cycles are pro-
cessed. The second, First Clinch and Trade, is nonbossy and independent of the order
in which cycles are processed but allows more unnecessary trades than is required to
be strategyproof and efficient. Both rules are strategyproof.
JEL Classification: C78, D61, D78, I20
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This paper is concerned with the assignment of agents to discrete resources when

monetary transfers are prohibited. In particular, we focus on the application of as-
signing students to public schools. As Abdulkadiroglu and Sönmez (2003) detail in
their seminal paper on school assignment, the two mechanisms widely considered by
economists are Gale and Shapley’s Deferred Acceptance algorithm (Gale and Shap-
ley 1962) and Gale’s Top Trading Cycles (Shapley and Scarf 1974), hereafter TTC.
In this paper, we introduce two alternatives to TTC. Both mechanisms are variations
of TTC designed to mitigate an undesirable feature of TTC when objects may be
assigned to more than one agent.
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When choosing an assignment mechanism a school board aims to balance the
following three priorities: strategyproofness, efficiency, and fairness. An assignment
is fair if there is no student i and school a such that i strictly prefers a to her assign-
ment and i is ranked higher at a than one of the students assigned to a.1 Efficiency
and fairness are incompatible in the sense that there may not always exist an as-
signment that is both fair and efficient (Balinski and Sönmez, 1999 and Roth 1982).
Strategyproofness is also incompatible with efficiency and fairness as there does not
exist a strategyproof mechanism that always selects a fair and efficient assignment
even when one exists (Kesten 2010). Therefore, the market designer must prioritize
between the conditions. If, for example, she values strategyproofness first, fairness
second, and efficiency third, then the deferred acceptance algorithm should be her
choice. If she values efficiency first, fairness second, and strategyproofness third,
then she should run the efficiency-adjusted deferred acceptance algorithm introduced
by Kesten (2010).

This paper seeks to address the question of how to assign students when the de-
signer values strategyproofness first, efficiency second, and fairness third.2 Tradition-
ally, the recommendation would be to run TTC (Abdulkadiroglu and Sönmez 2003).
Indeed, when the capacity of each object assigned is only one, TTC may be thought of
as the most fair among strategyproof and efficient mechanisms (Morrill 2013). How-
ever, we demonstrate that this is not necessarily the case for the school assignment
problem.

TTC for the school assignment problem, as introduced in Abdulkadiroglu and
Sönmez (2003), proceeds as follows. Each student points to her favorite school, and
each school points to the student with highest priority. As there are a finite number of
students and schools, there must exist a cycle. In each cycle, assign the student to the
school she is pointing to. Remove the assigned students and reduce the capacity of
each school that is assigned a student by one. When a school has no remaining capac-
ity, it is removed. The algorithm terminates when there are no students remaining or
when there are no schools with available capacity. TTC has many desirable features.
It is Pareto efficient, strategyproof, and individually rational. For the housing market
setting introduced by Shapley and Scarf (1974), TTC makes the unique assignment
that is in the core (Roth and Postlewaite, 1977).

In TTC, if a student i’s most preferred school is a and the student has one of
the qa highest priorities at a, then she is always assigned a. However, TTC allows
her to trade her priority at other schools in order to be assigned a. This causes an
unnecessary distortion as the following example illustrates.

Example 1 Suppose there are three agents {i, j,k} and two schools {a,b}. School a
has a capacity of two while school b has a capacity of one. Define student preferences,

1 When objects do not have priorities over agents, then ex-ante fairness is typically interpreted as equal
treatment of equals. See for example Hylland and Zeckhauser (1979), Bogomolnaia and Moulin (2001,
2002), and Klaus and Klijn (2006). Kesten and Yazici (2012) consider ex-post fair assignment rules when
objects do not have priorities.

2 As there is no tension between efficiency and strategyproofness, this is equivalent to valuing efficiency
first, strategyproofness second, and fairness third.
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P, and school priorities, �, according to the following rank-order lists:

Pi Pj Pk �a �b
b a b i j
a b a j k

k i

In the first round of TTC, {i,b, j,a} form a cycle. Therefore, T TC(R,�) assigns
i, j, and k to b, a, and a respectively.

In Example 1, j has one of the two highest priorities at her most preferred school,
which has a capacity of two. Therefore, TTC will always assign j to a regardless
of i and k’s preferences or j’s priority at b. However, TTC allows j to make an un-
necessary trade with i. This trade causes a distortion. Compare TTC’s assignment to
assigning i, j, and k to a, a and b, respectively. This assignment is fair and efficient
whereas the TTC assignment is not fair. The only agent that does not get her top
choice is i, and i has lower priority at her top choice, b, then the student assigned to
b, k.

We introduce two variations of TTC in order to avoid these unnecessary trades.
In the first algorithm, Clinch and Trade (C&T), we run TTC but at each step of the
algorithm we check if an agent is able to “clinch” her most preferred school before
we have her point to it. An agent clinches a if a is her most preferred school and she
has one of the qa highest priorities at a, where qa is the remaining capacity of a. This
clinching process allows us to reduce the number of unnecessary trades implemented
by TTC. Note that it does not completely eliminate these trades as once an agent
points at a school a, she continues to point at a until a is assigned to capacity. This is
necessary in order to preserve strategyproofness,3 but unfortunately, it allows her to
trade for a even if in subsequent rounds she has one of the qa highest priorities at a.

C&T differs from TTC in several ways. We will demonstrate that unlike TTC,
C&T is not independent of the order in which cycles are processed. In addition, C&T
is bossy and therefore not group-strategyproof.

We introduce a second algorithm, First Clinch and Trade (FC&T), which is strat-
egyproof, efficient, nonbossy, group strategyproof, and independent of the order in
which cycles are processed. We define an agent i to be guaranteed a seat at school a if
i has one of the qa highest priorities at school a. In this algorithm, we run TTC but if
an agent ever points at a school where she was initially guaranteed a seat, we assign
the student to the school without allowing her to trade her priority.

FC&T has implications for two important characterizations of assignment mech-
anisms. Papai (2000) demonstrates that a mechanism is group-strategyproof, Pareto
efficient, and reallocation proof if and only if it is a hierarchical exchange rule. In
a recent paper, Pycia and Unver (2010) generalize hierarchical exchange rules to a
new class of assignment mechanisms that they call Trading Cycles. They demon-
strate that Trading Cycles is the unique group-strategyproof and Pareto efficient class
of mechanisms.

3 See Example 4 on Page 8.
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The characterizations of hierarchical exchange rules and Trading Cycles are both
for the special case where objects may only be assigned to one agent. A natural ques-
tion is whether or not they generalize when capacities may be greater than one. The
simplest way to generalize hierarchical exchanges to general capacities is to allow
only one agent to own an object at any given time. This is the approach taken by
Pycia and Unver (2011). We call this a single hierarchical exchange. In Section 4
we demonstrate that FC&T is not a single hierarchical exchange or an instance of
trading cycles for any simple ownership. Since FC&T satisfies all of the axioms of
Papai (2000) and Pycia and Unver (2010), this demonstrates that a more nuanced
ownership structure must be considered to fully characterize exchange mechanisms
for school choice. Dur (2013) and Morrill (2013) provide characterizations of TTC
for the school choice problem.

The paper most similar to ours is Kesten (2004). Kesten (2004) introduces sev-
eral important and innovative algorithms including the Efficiency Adjusted Deferred
Acceptance Algorithm later described in Kesten (2010). Most relevant to the current
paper is his algorithm Equitable Top Trading Cycles (ETTC). Roughly speaking,
ETTC proceeds as follows. If school a has qa available spots, then each of the top
qa-ranked students at a are allocated a seat at a. The algorithm considers student-
school pairs (i,a) where i has been allocated a seat at a. Each pair (i,a) points to the
unique pair ( j,b) such that b is i’s favorite school and j has the highest priority at a
among students that have been allocated b. There must exist at least one cycle, and
the algorithm assigns each student in a cycle to its favorite available school. There
are a number of important additional details for which the reader should refer to the
paper. For example, a student i may appear in multiple cycles or even the same cycle
multiple times. All cycles are processed, but as i is only assigned one copy of her
favorite school, Kesten defines an inheritance procedure for the “extra” copies. Sim-
ilarly, after a student i is assigned, there is an inheritance procedure for the schools
that i was allocated but i did not use in a trade. ETTC is strategyproof and Pareto
efficient.

ETTC and our algorithms were developed independently and consequently take
different approaches; however, ETTC addresses the same issue with TTC that is de-
scribed in the current paper. In Kesten’s definition of ETTC, if i’s favorite school is
a and i has been allocated a seat at a, then all student-seat pairs involving i point to
(i,a). This serves much of the same role as our clinching procedure, and in particular,
a student does not trade her priority at a different school in order to be assigned to a
school she was initially guaranteed to be admitted to. A key difference is that C&T
is able to iterate the clinching procedure whereas the inheritance rules of ETTC wait
until each person initially allocated a school has been assigned before proceeding
with the inheritance. Example 2 demonstrates this.

Example 2 Suppose there are four agents {i, j,k, l} and three schools {a,b,c}. School
a has a capacity of two while school b and c have a capacity of one. Define student
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preferences, P, and school priorities, �, according to the following rank-order lists:

Pi Pj Pk Pl �a �b �c
b a b c l j l
a b a i k

j i
k l

In C&T, l clinches c. After removing l, j is able to clinch a. This enables k to clinch
b, and finally, i is assigned to a.

In ETTC, the initial student-school pairs are {(l,a),(i,a),( j,b),(l,c)}. (l,c) points
to itself. (l,a) points to (l,c). (i,a) points to ( j,b). ( j,b) points to (i,a) since i is
ranked higher at b than l is. Therefore, in the first round of ETTC, i, j, and l are
assigned to b, a, and c, respectively. Therefore, k is assigned to a.

Note that FC&T does not iterate the clinching procedure. In Example 2, FC&T
makes the same assignment as ETTC. However, ETTC and the clinching algorithms
also differ in the manner in which they make trades. The types of trades made in
C&T and FC&T correspond exactly to trading cycles. However, the trades in ETTC
are more complex. Example 3 illustrates this.

Example 3 Suppose there are four agents {i, j,k, l} and three schools {a,b,c}. School
a has a capacity of two while b and c have a capacity of one. Define student prefer-
ences, P, and school priorities, �, according to the following rank-order lists:

Pi Pj Pk Pl �a �b �c
a c b b j i i

l j l
j k j

l

In C&T (and FC&T) no agent is able to clinch in the first round. {i,a, j,c} is the
only cycle. In the second round of C&T, k clinches b. In the second round of FC&T,
k and b form a trivial cycle. Therefore, both algorithms assign i, j, k, and l to a, c, b,
and a, respectively.

In ETTC, the initial student-school pairs are {( j,a),(l,a),(i,b),(i,c)}. ( j,a) points
to (i,c) since j’s favorite school is c. (i,c) points to (l,a) since i’s favorite school is
a but l is ranked higher than j at c. (l,a) points to (i,b), and (i,b) points to ( j,a).
Therefore, ETTC assigns i, j, k, and l to a, c, a, and b, respectively.

1 Model

We consider a finite set of agents I = {i, j,k, . . .} and a finite set of objects O =
{a,b,c, . . .} . We assume that each object a has a capacity for qa many agents. Each
agent i ∈ I has a complete, irreflexive, and transitive preference relation Pi over O∪
{ /0}. /0 represents an agent being unassigned, and q /0 = ∞. aPib indicates that i strictly
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prefers object a to b. Given Pi, we define the symmetric extension Ri by aRib if and
only if aPib or a = b.

Each object a ∈ O has a complete, irreflexive, and transitive priority ranking �a
over I. In particular, i �a j is interpreted as agent i has a higher priority for object a
than agent j.

We let P = (Pi)i∈I , �= (�a)a∈O, P−I′ = (Pi)i∈I\I′ , and �−O′= (�a)a∈O\O′ . When
I and O are clear from the context, for notational convenience we will refer to the
assignment problem as (P,�).

An assignment is a function µ : I→O∪{ /0} such that for each a∈O, |{i ∈ I|µ(i) = a}|≤
qa. In a slight abuse of notation, for a set of agents I′⊂ I, we define µ(I′)= {a ∈ O|∃i ∈ I′ such that µ(i) = a},
and set µ(a) = {i ∈ I|µ(i) = a}.

An assignment is Pareto efficient if there does not exist another assignment ν

such that ν(i)Riµ(i) for every i ∈ I and ν(i)Piµ(i) for some i.
We denote by R, C , and A the sets of all possible preference relationships,

priority rankings, and assignments, respectively. An assignment mechanism is a
function φ : R×C →A . The following are important and well studied properties of
assignment mechanisms.

– A mechanism φ is strategyproof if reporting true preferences is each agent’s
dominant strategy. That is:

φ(P,�)(i)Riφ(P′i ,P−i,�)(i)

for all P, �, i ∈ I, and P′i .4

– A mechanism φ is nonbossy if for all P,�, i∈ I, and P′i , φ(P,�)(i) = φ(P′i ,P−i,�
)(i) implies φ(P,�) = φ(P′i ,P−i,�).

– A mechanism φ is group-strategyproof if for all P and �, there does not exist
J ⊂ I and P′J such that for all i ∈ J, φ(P′J ,P−J ,�)(i)Riφ(P,�)(i) and for some
j ∈ J, φ(P′J ,P−J ,�)( j)Pjφ(P,�)( j).

– A mechanism φ is manipulable through reallocation if there exist P, i, j∈ I, and
P′i ,P

′
j such that φ(P′i ,P

′
j,P−i, j,�)(i)R jφ(P,�)( j), φ(P′i ,P

′
j,P−i, j,�)( j)Piφ(P,�

)(i) and φ(P,�)(h) = φ(P′h, ,P−h,�)(i) 6= φ(P′i ,P
′
j,P−i, j,�)(h) for h = i, j. A

mechanism is reallocation-proof if it is not manipulable through reallocation.

Abdulkadiroglu and Sönmez (2003) give a detailed description of TTC. Given
strict preferences of students and strict priority lists for schools, TTC assigns students
to schools according to the following algorithm. In each round, each student points to
her most preferred remaining school, and each school with available capacity points
to the remaining student with highest priority. As there are a finite number of students,
there must exist a cycle {o1, i1, . . . ,oK , iK} such that each o j and i j points to i j and
o j+1, respectively (with oK+1 ≡ o1). For each cycle, student i j is assigned to school
o j+1, i j is removed, and the capacity of o j+1 is reduced by one. When a school has no
remaining capacity, it is removed. For any R ∈R,�∈ C , the mechanism T TC(R,�)
outputs the assignment made by TTC.

4 Note that we only consider the strategic incentives of students. Priorities at a school are typically
created by a school board and therefore are not prone to manipulation. However, see Kesten (2012) and
Afacan (2014) for interesting potential manipulations by schools.
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2 Clinch and Trade

In this section, we introduce a new algorithm, Clinch and Trade (C&T), designed to
reduce the number of unnecessary trades implemented by TTC. C&T is a variation of
TTC. Each student points to her favorite school, and each school points to the student
with highest priority. The innovation is to check if an agent is guaranteed admissions
to her favorite school before allowing her to point at it. TTC is independent of the
order in which we process cycles; however, the order in which we process cycles is
important to C&T. In particular, when an agent is assigned to a school and removed,
she is removed from the priority list of each school. As a result, the priorities of
each remaining student weakly improve. Therefore, a student may not initially be
guaranteed admissions to a school but after other students are assigned and removed,
her admission may become guaranteed.

However, we must be careful about which students we allow to clinch. In par-
ticular, once a student has pointed at school a, we cannot let her clinch a. This is
necessary to preserve strategyproofness. All students participate in the clinching pro-
cess in the first round, but we only allow a student to participate in the clinching
process in round k if the school she was pointing to in round k− 1 was removed at
the end of round k−1.

Clinch and Trade
Round 1:

1a For each i ∈ I, if i is one of the qa highest ranked student at i’s most preferred
school a, then assign i to a, remove i and set qa = qa−1. Whenever we remove a
student, we adjust the rankings of all schools accordingly. We call this clinching
a school. Iterate the clinching procedure until no agent has one of the qa highest
rankings at her most preferred school a.

1b Have each student that remains point to her most preferred school that has ca-
pacity greater than zero. Have each school with available capacity point to the
highest ranked student. Note that there must exist a cycle. For every cycle that
exists, assign the agent to the school she is pointing to, remove the agent, and
reduce the capacity of the school by one.

Round k:

k.a If the school that i was pointing to in Round k−1 still has available capacity, then
i continues to point to the same school. For the students whose favorite school was
removed in the previous round, iterate the clinching process until no student has
one of the qa highest priorities at her most preferred school a unless she was
pointing to a at the end of round k−1.

k.b Have each student that remains point to her most preferred school that has ca-
pacity greater than zero. Have each school with available capacity point to the
highest ranked student. Note that there must exist a cycle. For every cycle that
exists, assign the agent to the school she is pointing to, remove the agent, and
reduce the capacity of the school by one.

The most natural variation of TTC would be to have an agent i clinch an object
a whenever she points to a and has one of the qa highest priorities at a. We call
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this variation of Always Clinch and Trade (AC&T). In contrast, C&T only allows an
agent to clinch an object before the first time she points at it. Example 4 demonstrates
that AC&T is not strategyproof.

Example 4 Suppose there are five agents {i, j,k, l,m} and four schools {a,b,c,d}.
School a has a capacity of two while the other schools have a capacity of one. Define
student preferences, P, and school priorities,�, according to the following rank-order
lists:

Pi Pj Pk Pl Pm �a �b �c �d
c a b d c i j l m
b l k
a j i

k

In the first round of AC&T, no agent is able to clinch an object. The only cycle is
{l,d,m,c}. After removing this cycle, j is now able to clinch a. k now clinches b,
and i is assigned to a. Therefore, AC&T assigns i, j, k, l, and m to a, a, b, d, and c
respectively. Suppose alternatively that i ranks b first among schools. Now {i,b, j,a}
form a cycle in the first round of AC&T and i is assigned to b, a school she strictly
prefers to the assignment she receives under her true preferences. Therefore, AC&T
is not strategyproof. Note that the first round of C&T is the same as the first round of
AC&T. However, in the second round j does not clinch a. Even though she now has
one of the two highest priorities at a, j is not eligible to clinch a in the second round
because she was already pointing at a in the first round. As a result, i has no incentive
to misrepresent her preferences as she is assigned b under C&T.

Although AC&T is not strategyproof, the following proposition demonstrates that
C&T is strategyproof and efficient.

Proposition 1 C&T is:

– Pareto efficient
– strategyproof

Proof Pareto efficient: A student assigned in Round 1a cannot be made better off.
Consider an agent i assigned in Round 1b. If i receives her top choice, then she cannot
be made better off. If not, then i’s top choice was assigned up to capacity to agents
in Round 1a. Therefore, i cannot be made better off without making another agent
worse off. Iterating this argument, we find that no student can be made strictly better
off without harming a student who was assigned earlier in the algorithm.

Strategyproof: Consider the following thought exercise. We fix a student i, make
i aware of the preferences of all other students, and at the beginning of each round,
we give i the opportunity to change her preferences if she desires. We show that she
never needs to change her preferences in the current round, and therefore never needs
to change her preferences at all. i never needs to change her preferences before an
“a” round because if she clinches an object, it is her top choice among remaining
objects. If she changes her preferences but does not clinch, then she does just as well
waiting until the “b” round to change her preferences. Consider i’s choice before a
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“b” round. If she will be assigned in this round with her true preferences, then she
does not benefit from changing her preferences as she already receives her top choice
among available objects. Suppose she is not going to be assigned in that round. If she
changes her preferences and this does not cause a cycle to form, then she does just as
well leaving her preferences the same as she can always change them before the next
round. Suppose changing her preferences causes the cycle {i,o1, i1,o2, . . . , ik−1,ok}
to form. In this round, i is the only agent that can form a cycle with any of the agents
{i1, . . . , ik−1}. Therefore, if i does not change her preferences, then {i1, . . . , ik−1}
continue to point to the same objects in the next round. In particular, consider any
i j ∈ {i1, . . . , ik−1}. i j does not clinch an object in the next round because she is point-
ing to an object that was not removed in the previous round. Since i j has the highest
priority at o j, o j cannot be assigned to capacity until i j is assigned. Similarly, i j con-
tinues to point to o j+1 until o j+1 is removed. Therefore, if i does not change her
preferences, then o j continues to point to i j in the next round and i j continues to
point to o j+1 for each j. Therefore, i does not need to change her preferences in this
round as she can change her preferences in the next round and still be assigned o1.
Therefore, there is never a round where i needs to change her preferences to improve
her assignment. Since i never needs to change her preferences in the current round but
she is assigned in a finite number of rounds, i never needs to change her preferences
and the mechanism is strategyproof.

While C&T is strategyproof and efficient, it no longer retains some of TTC’s
desirable properties. We demonstrate this through a series of examples. First, C&T is
bossy (and therefore is not group strategyproof, Papai 2000). The reason for this is
that although C&T reduces the number of unnecessary cycles, it does not completely
eliminate them. Next, a desirable feature of TTC is that it makes the same assignment
regardless of the order in which cycles are chosen. C&T is dependent of the order in
which cycles are chosen.

Example 5 (C&T is bossy) Suppose there are five agents {i, j,k, l,m} and four schools
{a,b,c,d}. The capacities are qa = 2 and qb = qc = qd = 1. Define P and� according
to the following rank-order lists:

Pi Pj Pk Pl Pm �a �b �c �d
b a b c d i j m l
a b a l k
c c c j i

No agent clinches a school. In Round 1b {l,c,m,d} and {i,b, j,a} form cycles.
Therefore, the final assignment is: (

i j k l m
b a a c d

)
However, if j submits preferences P′j : c,a,b, then she points to c in Round 1b. Since
c is assigned to l and removed during 1b, in Round 2a j clinches a (l was removed
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in 1b, therefore j now has one of the two highest priorities at a school with capacity
two). Now k clinches b and i clinches a. So the final assignment is:(

i j k l m
a a b c d

)
Therefore, j is bossy as she can change her preferences, not change her assign-

ment, but change the assignment of other agents.

The next example demonstrates that C&T is dependent on the order in which
cycles are removed.

Example 6 Suppose all schools have a capacity for one student except s1 which has
a capacity of two. Consider the following preferences and priorities:

i1 i2 i3 i4 i5 i6 i7 s1 s2 s3 s4 s5 s6
s3 s2 s2 s4 s3 s6 s5 i7 i1 i4 i5 i6 i7
s1 s1 s1 i3 i2

i1 i3

No student clinches a school in Round 1.a. However, there are two cycles: (i4,s4, i5,s3)
and (i6,s6, i7,s5). If we only assign cycle (i4,s4, i5,s3) then i1 does not clinch s1.
Therefore, she points to s1. The only cycle is (i6,s6, i7,s5). However, after we remove
the cycle, i1 continues to point to s1 (only a student who’s most preferred assignment
was removed in the previous round may clinch a school). Therefore, the reduced
problem is:

i1 i2 i3 s1 s2
s1 s2 s2 i3 i1

s1 s1 i1 i2
i3

(i1,s1, i3,s2) forms a cycle, and the final assignment is:(
i1 i2 i3 i4 i5 i6 i7
s1 s1 s2 s4 s3 s6 s5

)
However, if in Round 1.b. we process the cycle (i6,s6, i7,s5) instead of the cycle

(i4,s4, i5,s3), then every student continues to point to the same school. Therefore, we
next process the cycle (i4,s4, i5,s3). Now, i1 is no longer pointing to a school and the
reduced problem is:

i1 i2 i3 s1 s2
s1 s2 s2 i3 i1

s1 s1 i1 i2
i3

Therefore, i1 clinches s1. After we remove i1, i2 forms a cycle with s2 and the final
assignment is: (

i1 i2 i3 i4 i5 i6 i7
s1 s2 s1 s4 s3 s6 s5

)
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3 First Clinch and Trade

We introduce an alternative modification of TTC that is nonbossy and independent
of the order in which cycles are processed. Intuitively, we run TTC, but we do not
allow a student that initially had one of the qa highest priorities at a school a to trade
with another student in order to receive a. The key difference between First Clinch
and Trade (FC&T) and C&T is that in FC&T we do not update who is able to clinch
her most preferred school. An agent is only able to clinch school a if she initially had
one of the qa highest priorities at a.

For notational convenience, we fix the priorities of the schools, �. We define a
student’s ranking at school a to be her spot on the priority list, ra(i) := |{ j ∈ I| j �a i}|.
For each school a, we define the set of students that are guaranteed admissions to a:

Ga := {i ∈ I|ra(i)≤ qa} .

In particular, a student is only defined to be guaranteed admissions to a school a if
she initially has one of the qa highest rankings at a.

First Clinch and Trade (FC&T) 5

To aid with intuition and the proofs of properties of the algorithm, we provide
two equivalent formulations.

Formulation 1 - “Pointing” version
Round k:

Each student points to her most preferred school with available capacity.
Each school points to the remaining student with highest priority.
If student i is pointing at school a and i∈Ga then assign i to a, remove i, and reduce

a’s capacity by one. For the remaining students, if there exists a cycle, assign each
student in the cycle to the school she is pointing to. Remove the students in the
cycle and reduce the capacity of each school in the cycle by one.

The algorithm terminates when all students are assigned or no school has available
capacity.

We will say that a student is assigned directly to a if i ∈Ga. A student is assigned
indirectly to a if it is part of a non-trivial trading cycle. Note that unlike TTC, two
different students may be assigned to the same school in the same round in FC&T.
This occurs if a is both involved in a trading cycle and there is a student i such that
i points to a, i is not the highest priority student for a, but i ∈ Ga. Note however that
no school is assigned more than its capacity by the algorithm.

The pointing formulation is described as processing the direct assignments first
and the indirect assignments second. However, the algorithm is well defined for any
order in which assignments are made. In fact, we will demonstrate that like TTC, the
final assignment is independent of the order in which assignments are processed.

Formulation 2 - “Clone” version

5 In early drafts of this paper, we called this algorithm Priority-Adjusted TTC.
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For our second formulation, we use a cloning procedure that is similar but not
equivalent to the cloning procedure described in Roth and Sotomayor (1990) for gen-
eralizing the marriage problem to the college admissions problem when schools have
substitutable preferences. Consider any assignment problem I, O, R, �. As in the
standard cloning procedure, we clone each school a ∈ O qa times. Formally, we de-
fine schools a(1),a(2), . . . ,a(qa). For expositional purposes, we call a(i) the ith clone
of a, and we call a the prototype of a(i). Each clone has the capacity for one student,
and a clone has the same priorities as the prototype with one exception: the kth ranked
student is moved to the top of the priority list for the kth clone. Student preferences
over clones are modified in a similar manner. If a student prefers a to b, then that
student prefers any of the a clones to any of the b clones. A student strictly prefers
a lower numbered clone to a higher numbered clone with one exception: if student i
was initially the kth ranked student at a where k≤ qa (in other words, if i was initially
guaranteed a seat at a), then i’s favorite a-clone is a(k). We designate this induced
assignment problem by Î, Ô, R̂, �̂.

We define the clone version of the algorithm, χ(R,�), by assigning each agent i
to the prototype of T TC(R̂, Î, Ô,�̂)(i). In other words, if T TC(R̂, Î, Ô,�̂) assigns i to
a clone of school a, then χ(R,�) assigns i to a. For notational convenience, when the
agents, objects, and priorities are clear from context, we will use the notation T TC(R̂)
and χ(R).

The pointing and the clone formulations are equivalent. Specifically, for any or-
der in which agents are processed in the Pointing version, there is a corresponding
order of processing agents in the Clone version that yields the same assignment, and
vice versa. To see this, consider any order of processing agents under the pointing
formulation. At every step, we either process a student who clinches a school or else
a group of students that are part of a cycle. Student j only clinches school a in the
pointing formulation if j was initially guaranteed a spot at a and a is now j’s favorite
school with available capacity. In particular, if j is initially the kth ranked student at
a, then k≤ qa. Therefore, by construction j is the highest ranked student at a(k) in the
clone formation and a(k) is now j’s favorite object; therefore, j and a(k) form a trivial
cycle in the clone formulation. Similarly, in a non-trivial cycle under the pointing
formation, no agent was guaranteed the object she is pointing to; however, she is the
highest ranked student of the school pointing at her. Therefore, under the clone for-
mulation, the same agents and the lowest numbered remaining clones form a cycle.
Analogously, each cycle in the clone formulation corresponds to either a cycle or a
clinch in the pointing formulation.

We can immediately conclude that the pointing formulation is independent of the
order in which we process the students. Processing students in two different orders
in the pointing formulation corresponds exactly to processing cycles in two different
orders under the clone formulation. However, the clone formulation simply runs TTC
with modified objects and preferences. Since TTC is independent of the order in
which cycles are processed, the clone formulation makes the same assignment under
either ordering. Therefore, the pointing formulation must make the same assignment
under either ordering as well.

Note that FC&T does not process as many students via clinching as C&T. The
reason is that a student i may not initially be guaranteed a spot at school a, but if
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students ranked higher than i are assigned to schools other than a, i may become
guaranteed a spot at a in a later round. However, FC&T does not keep i from trading
her priority at a different school b in order to receive a spot at a unless i is initially
guaranteed a spot at a. Therefore, FC&T still allows unnecessary trades to take place.

However, the disadvantage of C&T is that it lost several of the desirable attributes
of TTC. Specifically, C&T is bossy and dependent on the order in which cycles are
processed. As the next proposition demonstrates, FC&T retains the desirable proper-
ties of TTC that have been previously identified by the literature. Note that although
FC&T is closely related to TTC, it is not equivalent to TTC for any priority structure.
We demonstrate this in Section 4.

Proposition 2 First Clinch and Trade is:

1. Pareto efficient.
2. strategyproof.
3. non-bossy.
4. group strategyproof.
5. reallocation proof.
6. independent of the order in which cycles are processed.

We will use the clone formulation in the proof of Proposition 2. The intuition is
that since FC&T is an instance of TTC under a modified problem, the algorithm has
many of the same properties as TTC. The following technical lemma will be useful
in our argument. Suppose i has two preference profiles, Ri and R′i, such that yield
the same assignment for i under FC&T: χ(R)(i) = χ(R′i,R−i)(i) = a. Potentially, i
could have been assigned to two different clones of a. We establish that this is not the
case. If i has the same assignment under two different preference profiles, then i was
assigned to exactly the same clone under either preference.

Lemma 1 For any i ∈ I, R ∈ R and any R′i, χ(R)(i) = χ(R′i,R−i)(i) if and only if
T TC(R̂)(i) = T TC(R̂′i, R̂−i)(i).

Proof The if direction is trivial. By the definition of FC&T, if T TC(R̂)(i)= T TC(R̂′i, R̂−i)(i),
then χ(R)(i) = χ(R′i,R−i)(i). For the other direction, consider any i, R and R′i such
that χ(R)(i) = χ(R′i,R−i)(i). We verify that i is assigned to the same clone under both
Ri and R′i. When running TTC, do not process a cycle involving i until all other cycles
have been processed. In the round where i is processed, note that there is a path from
all remaining schools to i as otherwise there would be a cycle not containing i. Also,
note that the structure of this graph does not depend on i’s report. In particular, it is
the same whether i reports Ri or R′i. Let a = χ(R)(i) = χ(R′i,R−i)(i). If i ∈ Ga then
i points to a(ra(i)) under either Ri or R′i. Otherwise, i points to the lowest numbered
clone that remains. But since the remaining schools are the same, and since under
both Ri and R′i i points to a clone of a, it must be that i points to the same clone under
either Ri or R′i. Therefore, T TC(R̂)(i) = T TC(R̂′i, R̂−i)(i).

Proof Fix the set of students, schools, priorities, and capacities, and let χ(R) be the
assignment produced by FC&T for the set of preferences R.
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Pareto efficiency - Suppose for contradiction there exists a Pareto improvement
which changes the assignment of agents A = {a1,a2, . . . ,an}. Let ai be the agent in A
that was assigned in the earliest round of the pointing formulation. ai already receives
her most preferred remaining school. Therefore, if she is reassigned, it must change
the assignment of an agent assigned in an earlier round. This contradicts ai being the
earliest reassigned agent.

Strategyproofness - Consider any agent i ∈ I. In the clone formulation, process
the cycle containing i last. As we mentioned previously, i’s report does not affect the
set of schools that remain, and there must exist a path from every remaining school
to i. Therefore, i has her choice among remaining schools and cannot do better than
revealing her preferences truthfully and being assigned her most preferred remaining
school.

Nonbossy This follows from Lemma 1 and the fact that TTC is nonbossy. Con-
sider any R and R′i such that χ(R)(i) = χ(R′i,R−i)(i). Let R′ = {R′i,R−i}. By Lemma
1, T TC(R̂)(i) = χ(R)(i) = χ(R′i,R−i)(i) = T TC(R̂′)(i). Since TTC is non-bossy,
T TC(R̂)( j)= T TC(R̂′)( j) for every j 6= i. Therefore, χ(R)( j)= T TC(R̂)( j)= T TC(R̂′)( j)=
χ(R′i,R−i)( j) for every j 6= i.

Group-Strategyproof Papai (2000) demonstrates that a mechanism is group-strategyproof
if and only if it is strategyproof and nonbossy.

Reallocation-proof This is similar to the argument for nonbossiness. Suppose for
contradiction there exist P, i, j, P′i , and P′j such that

χ(P′i ,P
′
j,P−{i, j})(i) R j χ(P)( j) (1)

χ(P′i ,P
′
j,P−{i, j})( j) Pi χ(P)(i) (2)

χ(P)(h) = χ(P′h,P−h)(i) 6= χ(P′i ,P
′
j,P−{i, j})(h) for h = i, j. (3)

Since by Lemma 1 χ(Q) = T TC(Q̂) for all Q, it must be that

T TC(P̂′i , P̂
′
j, P̂−{i, j})(i) R̂ j T TC(P̂)( j) (4)

T TC(P̂′i , P̂
′
j, P̂−{i, j})( j) P̂i T TC(P̂)(i) (5)

T TC(P̂)(h) = T TC(P̂′h, ˆP−h)(i) 6= T TC(P̂′i , P̂
′
j, P̂−{i, j})(h) (6)

for h = i, j. But this violates the fact that TTC is reallocation-proof.

4 Relationship to Hierarchical Exchange Rules

Papai (2000) introduces an important class of assignment mechanisms: hierarchical
exchange rules. Hierarchical exchange rules are a generalization of TTC. Initially,
ownership rights to each object are assigned to some agent. Agents then trade as in
TTC. If an agent “owns” multiple objects, then when that agent is assigned, the ob-
jects that she did not use in her trading cycle are inherited by remaining agents. The
hierarchical exchange rule is determined by the initial endowments and the inher-
itance rule. For example, a serial dictatorship is a hierarchical exchange rule where
the dictator is initially endowed all objects and the next dictator inherits all remaining
objects.
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Hierarchical exchanges are a broad and complex class of mechanisms, but the
central idea is rather intuitive. If we assign property rights and allow the agents to
trade, the resulting assignment will be Pareto efficient. When an object can only be
assigned to one agent, then the ownership structure is straightforward; each object
is owned by exactly one agent. However, when objects may be assigned to multiple
agents, the ownership structure may be more complex.

The simplest ownership structure is to allow each object a be owned by only one
agent i. After i is assigned, if a still has available capacity, then a is inherited by one
of the remaining agents. This is the approach taken in Pycia and Unver (2011) and
we will refer to this as a single hierarchical exchange. Not only is this a natural
ownership rule, but it means there is only one type of trade that we need to consider:
a trading cycle.

When objects may be assigned to only one agent, Papai (2000) demonstrates that
a mechanism is group-strategyproof, Pareto-optimal, and reallocation-proof if and
only if it is equivalent to a hierarchical exchange rule. For general capacities, we
demonstrate that these axioms are not sufficient to categorize the class of single hier-
archical exchanges. We do not need to worry about precise definitions of inheritance
rules or order of exchange because our counterexample is based on property rights.
The essential point is that the clinching procedure cannot be captured by a simple
ownership structure. Consider an agent who is guaranteed an object a but does not
have the highest priority at a. This agent does not own a since she is unable to trade
a. However, she may be assigned a without trading for it. In a single hierarchical
exchange rule, if you can be assigned an object without trading for it, you must own
it. If you own it, then you are able to trade it for other objects.

In particular, FC&T is more nuanced than simply assigning property rights and
allowing agents to trade. We show that irrespective of the inheritance procedure, there
is no initial allocation of property rights to agents so that FC&T corresponds to a
single hierarchical exchange rule.

Proposition 3 First Clinch and Trade is not equivalent to any single hierarchical
exchange rule.

Proof Suppose there are three agents {i, j,k} and three objects {a,b,c}. Object a has
a capacity of two while objects b and c have capacity one. Define � according to the
following rank-order lists:

�a �b �c
i j k
j k i
k i j

We fix � and let µ(R) be the assignment made by FC&T for a given R. Suppose
for contradiction that there exists some single hierarchical exchange rule λ that cor-
responds to µ . That is to say, for given preferences R, µ(R) = λ (R). We define the
following preferences for convenience.

Pi Pj Pk P′i P′j P′k P′′i P′′j P′′k
b a b c c a a a a
a b a a a b b b b
c c c b b c c c c
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It is straightforward to verify that under λ , b is initially owned by j and c is
initially owned by k. Since λ is a hierarchical exchange rule, initially some agent
must own a. Suppose this agent is i. Then λ (R)(i) = b since i trades a to agent j in
order to receive b. But this is a contradiction as µ(R)(i) = a. Therefore, a is not owned
by i. Suppose instead that a is owned by j. Then λ (R′)( j) = c as j trades a for c with
agent k. However, µ(R′)( j) = a,6, a contradiction. Therefore, λ (R′)( j) 6= µ(R′)( j) a
contradiction. Therefore, a is not owned by j. Finally, suppose that a is owned by k.
Then λ (R′′)(k) = a, a contradiction since µ(R′′)(k) = b. Therefore, no agent owns a
which is itself a contradiction.

Our algorithm also relates to a second important characterization. Pycia and Un-
ver (2010) introduce a generalization of hierarchical exchange rules called Trading
Cycles. Trading Cycles extends the ownership structure of hierarchical exchange
rules to allow for two types of control over an object: ownership and brokerage. There
can be at most one broker and at most one brokered house. Each house points to the
agent that controls it. Each agent except for the broker points to her favorite object.
The broker, if there is one, points to her favorite object that is not the brokered house.
Otherwise, Trading Cycles proceeds in an identical manner to a hierarchical exchange
rule.

Pycia and Unver (2010) demonstrates when objects have capacity for at most
one agent that any group-strategyproof and Pareto efficient assignment mechanism
is equivalent to an instance of Trading Cycles. It is straightforward to generalize the
argument in Proposition 3 to show that FC&T is not an instance of Trading Cycles if
there is a simple ownership structure. In particular, none of the agents act as a broker
as all agents may be assigned to any object. FC&T does not correspond to Trading
Cycles for the same reason it does not correspond to a single hierarchical exchange
rule; FC&T has a more nuanced ownership structure.

In addition to single hierarchical exchanges, there is at least one other natural
ownership structure when objects may be assigned to multiple agents. Effectively, in
a single hierarchical exchange, one student owns all qa seats at a school a. An alterna-
tive is to allow an object a with capacity qa to be owned by up to qa different agents.
We call this multiple hierarchical exchange. One advantage to single hierarchical
exchanges is that there is only one natural way for the students to trade: a top trading
cycle. However, when multiple students own the same school, we must also specify
how the agents trade objects. For example, the clone formulation demonstrates that
FC&T can be considered a multiple hierarchical exchange. There, we specify which
trades are made by specifying the preferences agents have over clones of the same
object.

5 Conclusion

Typically a school board chooses between Top Trading Cycles and the Deferred Ac-
ceptance algorithm when deciding a mechanism to assign students to schools. How-
ever, this paper argues that alternative mechanisms should be considered. In particu-

6 No agent is guaranteed her top choice and i and k form the first cycle.
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lar, a student who is guaranteed to be admitted to her favorite school should not be
allowed to trade her priority at other schools. These trades are irrelevant to her and
may violate the priorities of the other students.

We propose a simple solution to this problem. If a student is guaranteed admission
to her favorite school, then she should be assigned to that school and not allowed to
trade. We introduce two strategyproof and efficient mechanisms that mitigate this
distortion: Clinch and Trade and First Clinch and Trade.
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