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Abstract

Top Trading Cycles was originally developed as an elegant method for finding a competitive

equilibrium of Shapley and Scarf’s housing market. We extend the definition of a competi-

tive equilibrium to the school assignment problem and show that there remains a profound

relationship between Top Trading Cycles and a competitive equilibrium. Specifically, in every

competitive equilibrium with weakly decreasing prices, the equilibrium assignment is unique

and exactly corresponds to the Top Trading Cycles assignment. This provides a new way of

interpreting the worth of a student’s priority at a given school. It also provides a new way of

explaining Top Trading Cycles to students and a school board.
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A hallmark of Lloyd Shapley’s work is to introduce a seemingly simple model and to provide

an elegant solution to the problem. A great part of his lasting legacy is that many years later

these problems and solutions have been the basis for modern market design. A perfect example

of this is school assignment. One of the seminal papers in market design is Abdulkadiroglu and

Sönmez (2003) which introduced school assignment as a market design problem.1 One can see the

influence of Gale and Shapley (1962) and Shapley and Scarf (1974) throughout that paper. While

Abdulkadiroglu and Sönmez’s model is described as a variation of Gale and Shapley’s College

Admissions model, it can also be viewed as a generalization of the Shapley and Scarf (1974) house

exchange model.2 Moreover, the two solutions Abdulkadiroglu and Sönmez propose, the Deferred

∗North Carolina State University. Email addresses: umut dur@ncsu.edu and thayer morrill@ncsu.edu.
1Balinski and Sönmez (1999) is the first paper to consider centralized school assignment. Naturally, their paper

is also heavily influenced by the work of Shapley.
2For example, Top Trading Cycles was first generalized for application to the object assignment problem by Papai

(2000) and Abdulkadiroglu and Sönmez (1999).
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Acceptance algorithm and the Top Trading Cycles algorithm (hereafter TTC), are both natural

modifications of the algorithms introduced in Gale and Shapley (1962) and Shapley and Scarf

(1974), respectively.

While Shapley and Scarf (1974) is primarily remembered for the introduction of TTC, this was

not the paper’s original purpose. Debreu and Scarf (1963) established the connection between

the core and a competitive equilibrium under standard regularity conditions such as convexity of

preferences, transferable utility, and perfect divisibility of the objects. Shapley and Scarf’s stated

purpose is to demonstrate that the same relationship between the core and a system of competitive

prices can exist in a model where none of these assumptions hold. In their housing exchange model,

there are n people and n houses. Each person owns one house and has only ordinal preferences over

the other houses. Shapley and Scarf demonstrate that in this model, where none of the standard

regularity conditions hold, a core assignment always exists and corresponds in a natural way to the

outcome from a system of competitive equilibrium prices.

Many papers have studied the properties of TTC when applied to the school assignment problem.

However, to the best of our knowledge, no paper has considered whether or not a competitive

equilibrium exists in this more general model and if so, what its properties are. Stated differently,

in the housing model it is not clear a priori the relative value of each house. However, this is

revealed by solving for the competitive equilibrium. In the school assignment problem, no student

owns a seat at a school. Instead, a student has a priority at each school. These priorities represent

a claim on the school, and therefore result in some degree of “ownership” over the school. However,

it is not clear a priori the value of a priority at a particular school.

In this paper we return to the classic concept of a competitive equilibrium in order to better

understand the value of a particular priority at a particular school in the school assignment problem.

Our approach is to assign a value to each priority. We allow each student to sell her most valuable

priority and buy the best priority that she is able to afford (where the “best” priority is the priority

that gains her admittance to the best possible school). We define an equilibrium to occur when the

prices clear the market. Specifically, for each school a with capacity for q students, q priorities are

sold, q priorities are purchased, and these priorities exactly coincide.

We demonstrate that a competitive equilibrium always exists for the school assignment problem

(Theorem 1).3 This result will not be surprising to readers familiar with TTC. Just as in the housing

3Miralles and Pycia (2014) consider the many-to-one assignment problem without transfers under the model of

Hylland and Zeckhauser (1979). They establish the Second Welfare Theorem by showing that any Pareto efficient
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market, we show that TTC can be used to find a competitive equilibrium of the school assignment

problem. However, our main result is surprising. We show that all competitive equilibria where

prices are weakly decreasing induce the same assignment: the assignment made by TTC (Theorem

2).

Interestingly, a similar result is true for the original Shapley and Scarf housing model. Roth and

Postlewaite (1977) demonstrate that the unique assignment in the core is the assignment made by

TTC. As any competitive assignment is in the core, this establishes that a student purchases the

same house in any competitive equilibrium. However, the school assignment problem is significantly

more complicated than the housing market problem. While there exists only one “reasonable”

assignment for a housing problem, there exist several for the school assignment problem.4 Therefore,

it is surprising that monotonic equilibria have such a consistent structure. We demonstrate that

alternative assignments can result from a competitive equilibrium when the worth of priorities are

not monotonic (Example 1).

1 Model

We consider a finite set of students I = {i, j, k, . . .} and a finite set of schools S = {a, b, c, . . .} . Each

student i ∈ I has a complete, irreflexive, and transitive preference relation Pi over S ∪ {∅} where ∅

denotes the option of being unassigned. Here, a Pi b indicates that student i strictly prefers school

a to school b. Given Pi, we define the symmetric extension Ri by a Ri b if and only if a Pi b or

a = b. A school a is acceptable for student i if a Pi ∅.

The capacity of each school a ∈ S is given by qa. Let q∅ = |I|. Each school a ∈ S has a complete,

irreflexive, and transitive priority order �a over I. In particular, i �a j is interpreted as student

i has a higher priority for school a than student j. We define � analogously to our definition of

R. A school choice problem is defined as a list (I, S, P, q,�) where P = (Pi)i∈I , q = (qa)a∈S , and

�= (�a)a∈S .

For each student i and school a ∈ S, we define the rank of i under �a to be the number of students

with weakly higher priority than i:

rank(i, a) := | {j ∈ I | j �a i} |.

assignment can be accomplished by a price mechanism.
4Consider, for example, the assignments made by Clinch and Trade or Prioritized Trading Cycles as described in

Morrill (2015b) and (2013b).
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An assignment is a function µ : I → S ∪ {∅} such that for each a ∈ S ∪ {∅}, | {i ∈ I | µ(i) = a} | ≤

qa. In a slight abuse of notation, for a set of students I ′ ⊆ I, we define µ(I ′) = ∪i∈I′µ(i) and

µ(a) = {i ∈ I | µ(i) = a} for each a ∈ S. An assignment µ is nonwasteful if there does not exist

a school-student pair (a, i) ∈ S × I such that a Pi µ(i) and |µ(a)| < qa.

Under school choice problem (I, S, P, q,�), the TTC mechanism selects its outcome through the

following algorithm:

Round 1: Assign a counter to each school, and set it equal to its quota. Each student points to

her most preferred, acceptable school. Each school with available seats points to the top-ranked

student in its priority order. Since there are a finite number of students and schools, there must be

at least one cycle. Assign each student in a cycle to the school she points to and remove her. The

counter of each school in a cycle is reduced by one and if it reduces to zero, the school is removed.

If all of a student’s acceptable schools have been removed, remove the student and assign her to ∅.

Round k > 1: Each remaining student points to her most preferred, acceptable, remaining school.

Each remaining school points to the remaining student with the highest priority. Assign each

student in a cycle to the school she points to and remove her. The counter of each school in a

cycle is reduced by one and if it reduces to zero, the school is also removed. If all of a student’s

acceptable schools have been removed, remove the student and assign her to ∅.

The mechanism terminates when all students have been assigned.

For convenience, we assume the total number of seats at schools is equal to the number of students

(i.e., Σa∈Sqa = |I|) and that each student finds all schools acceptable. This assumption is made

purely for expositional convenience, and all results continue to hold when it is relaxed. Under our

assumption, TTC assigns each student to a school in S and each school in S fills its quota.

2 Competitive Equilibria

In a classic exchange market, a competitive equilibrium consists of a price for each object such that

supply equals to demand. The school assignment problem is different in that no student owns a

school; however, each school has priorities over the students. A typical design objective is to have

students with higher priority at a school be more likely to gain admittance to that school than

students with lower priority, i.e., a student with higher priority has higher claim for that school.
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A key objective of this paper is to determine a systematic way of assigning value (price) to the

priorities at each school. Typically, we expect the value of a priority to be determined both by

the demand for the seats at a school and the supply of seats at the school. Both a low priority at

a highly demanded school and a high priority at an underdemanded school should be worth very

little. Therefore, it is natural to let the market forces of supply and demand determine the worth

of each priority.

We denote the set of priorities by Z ≡ {(m, a) | m ∈ {1, 2..., |I|} and a ∈ S} where (m, a) represents

the mth highest priority at school a ∈ S. We define a priority value function ν : Z → R+ where

ν(m, a) represents the value of the mth highest priority at school a ∈ S. The value function is our

analog to prices. We define a priority value function to be monotonic if for each school a ∈ S,

ν(x, a) ≥ ν(y, a) whenever x < y (a priority is worth weakly more than any “lower” priority).

Given priority value function ν, a student i’s wealth, denoted by ωi(ν), is defined to be her most

valuable priority:

ωi(ν) := maxa∈S ν(rank(i, a), a).

Each student sells one of her priorities and buys one priority. Therefore, we define an allocation

to be a function α : I → Z × Z where for each i ∈ I, α(i) = (αs(i), αp(i)). Here, αs(i) ∈

{(rank(i, a), a) | a ∈ S} ⊆ Z denotes the priority that i has sold. Similarly, αp(i) ∈ Z denotes the

priority that student i has purchased.5 An allocation α is feasible if ∪i∈Iαs(i) = ∪i∈Iαp(i) (every

priority that is bought is also sold).

Given an allocation α, we induce an assignment in a natural way. If a student i purchases priority

(x, a) ∈ Z, i.e., αp(i) = (x, a), she is assigned to school a.6 To avoid a triviality, we further impose

that she only is assigned to school a if ν(x, a) > 0.7 The market clearing conditions are that each

student is assigned to a school and each school a is assigned qa students.8

As with a classical competitive equilibrium, we define a students budget set and demand. For a given

value function ν, a student i’s budget set is defined as: Bi(ν) = {(x, a) ∈ Z | ν(m, a) ≤ ωi(ν)}.

Given value function ν, we define the set of affordable schools as Ai(ν) = {a ∈ S | ∃(x, a) ∈
5The definition of allocation can be easily extended to the general case. In particular, we can define allocation as

α : I → Z ∪ {∅} × Z ∪ {∅} where αs(i) = ∅ means i does not sell a priority and αp(i) = ∅ means i does not purchase

a priority.
6For the general case, if αp(i) = ∅, then she is unassigned.
7Otherwise, for any school a, i could always purchase (rank(i, a), a) and be assigned to a.
8In the general case, the two conditions would be that the induced assignment is a proper assignment and that it

is nonwasteful.
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Bi(ν) such that 0 < ν(x, a)}. As a reminder, a student is admitted to a school if she buys a

priority with non-zero value. In words, the affordable schools for student i are the schools she

can buy admittance to. We call i’s most preferred school in Ai(ν) (possibly ∅) her favorite

affordable school. If i’s favorite affordable school is a∗ 6= ∅, then we define i’s demand to be

{(x, a∗) ∈ Z|0 < ν(x, a∗) ≤ ωi(ν)}. In the degenerate case where i cannot afford any school (i’s

favorite affordable school is ∅), then we define i’s demand to be {(x, a) ∈ Z|ν(x, a) = 0}.9

Definition 1. A competitive equilibrium is a feasible allocation, α, and priority value function,

ν, such that

1. Each student sells one of her most valuable priority, ν(αs(i)) = ωi(ν), and purchases a priority

in her demand.

2. In the induced assignment, each student is assigned to a school and no school a is assigned

to more than qa students.10

A competitive equilibrium (α, ν) is monotonic if the priority value function ν is monotonic. That

is to say, if the worth of a priority is weakly decreasing in the rank of a student (ν(x, a) ≥ ν(y, a)

for any x < y).

Note that in any competitive equilibrium, assigning a student to the school where she bought

a priority is a valid assignment. We refer to this as the competitive assignment. Also, if j

purchases i’s priority at s, then we will say i sold her priority to j. Our competitive equilibrium

is purely a system of exchanges, but we are now able to interpret what assignment of values to

priorities makes this system of exchanges possible.

Now, we are ready to present our existence result.

Theorem 1. In any school choice problem (I, S, P, q,�), there always exists a monotonic compet-

itive equilibrium.

Proof. Just as in Shapley and Scarf (1974), TTC can be utilized in a natural way to find a monotonic

competitive equilibrium. We consider an implementation of TTC under problem (I, S, P, q,�)

where in each round all cycles are processed simultaneously.11 Let Sk denote the cycles processed

9Note that this set is nonempty as all of i’s priorities have value zero or else she would have a nonempty set of

affordable schools. By assumption, each student considers all schools acceptable.
10In the general case, this condition is that the induced assignment is a proper assignment and that it is nonwasteful.
11The TTC mechanism is defined in Section 1.
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in the kth round of TTC and K be the last round of TTC under problem (I, S, P, q,�). As a

reminder, we have assumed for expositional convenience that Σa∈Sqa = |I| and that all students

find all school acceptable.

Fix a positive real number π1 ∈ R++. Let (i1, a1, . . . , in, an) be a cycle in the first round of TTC.

For each 1 ≤ k ≤ n, set ν(rank(ik, ak−1), ak−1) = π1 and α(ik) = ((1, ak−1), (1, ak)).12 In words, ik

sells her priority at ak−1 (the school pointing at her) and buys the highest priority at ak (the school

she is pointing to). Note that by the definition of TTC, ak is her favorite school and therefore in

her demand. For each school a ∈ S, if the number of priorities allocated reaches to qa, then we set

the values of the unused priorities at school a to 0.

Similarly, fix a positive real number π2 ∈ R++ such that π2 < π1. Let (i1, a1, . . . , in, an) be a cycle

in the second round of TTC. For each 1 ≤ k ≤ n, set ν(rank(ik, ak−1), ak−1) = π2 and α(ik) =

((rank(ik, ak−1), ak−1), (rank(ik+1, ak), ak)). In words, ik sells her priority at ak−1 and purchases

ik+1’s priority at ak. If there is a school ak and a priority (x, ak), where x < rank(ik+1, ak), but

(x, ak) has not yet been assigned a value, then set ν(x, ak) = π1. Note that by the definition of

TTC, since ak points at ik+1, the xth ranked student at ak was already assigned in the first round

of TTC. By construction, for any student ik in the cycle, ik’s wealth is π2 and ik cannot afford any

school she prefers to ak. For each school a ∈ S, if the number of priorities allocated reaches to qa,

then we set the values of the unused priorities at school a to 0.

Proceed in this manner letting πk ∈ R++ denote the value assigned to each priority in Sk where

π1 > π2 > . . . > πk > . . . > πK > 0. Then, set the values of the priorities unused when the

mechanism terminates to 0.

Note that the values of priorities of schools in S are (weakly) decreasing. Further, each student’s

most valuable priority is the one used by TTC. Therefore, if there is a school a student prefers to

her TTC assignment, then that school was assigned to capacity in a previous round and as a result,

she cannot afford any of that school’s non-zero priced priorities. Therefore, her TTC assignment

is her favorite choice that she can afford. Indeed, each student who is assigned to a school in S

spends all of her wealth when she purchases a priority from that school. Therefore, these values

constitute a monotonic competitive equilibrium.

Of course, no problem has a unique monotonic competitive equilibrium as any monotonic transfor-

12Throughout this proof, it is understood that for k = 1, ak−1 = an. Also, notice that α(ik) =

((rank(ik, ak−1), ak−1), (rank(ik+1, ak), ak)).
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mation of any monotonic equilibrium values (prices) is itself a monotonic competitive equilibrium.

However, we demonstrate that the assignment in a monotonic competitive equilibrium is always

unique and exactly corresponds to the TTC assignment.

Theorem 2. When values (prices) are monotonic, there exists a unique competitive equilibrium

assignment. In particular, in any monotonic competitive equilibrium, each student purchases a

priority at the school she is assigned to by TTC.

In order to prove Theorem 2, we benefit from the following intermediate lemma.

Lemma 1. In a competitive equilibrium every student spends her entire wealth.

Proof. Let values for priorities ν and feasible allocation α = (αs, αp) constitute a competitive

equilibrium.

Each purchased priority must be affordable. Therefore,∑
i∈I

ν(αp(i)) ≤
∑
i∈I

ωi(ν).

If some student did not spend her entire wealth, then∑
i∈I

ν(αp(i)) <
∑
i∈I

ωi(ν).

However, each student’s wealth equals the amount she sold her priority for. Therefore,∑
i∈I

ωi(ν) =
∑
i∈I

ν(αs(i)).

Finally, there is only one price for any priority. Therefore, the sum of the purchase prices must

equal the sum of the sale prices. Moreover, feasibility of α, i.e. αp(I) = αs(I), implies that∑
i∈I

ν(αp(i)) =
∑
i∈I

ν(αs(i)).

Hence, ∑
i∈I

ν(αp(i)) =
∑
i∈I

ωi(ν).

Therefore, it would be a contradiction if some student did not spend her entire wealth.
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Now we are ready to prove Theorem 2.

Proof. Consider a competitive equilibrium (α, ν) where the values for priorities ν are monotone

and α = (αs, αp) is a feasible allocation. Recall that under our assumption in any competitive

equilibrium each student purchases a priority from a school in S. Let π1 be the value of the most

expensive priority, let S1 =
{

(rank(i, a), a)|ν(rank(i, a), a) = π1 for all a ∈ S and i ∈ I
}

be the

set of most expensive priorities, and let I1 be the set of students that purchase a priority for price

π1. By the definition of the competitive equilibrium and Lemma 1, π1 > 0 and I1 6= ∅. We show

by induction that I1 can be partitioned into top trading cycles.13 For the base step, consider any

j ∈ I1 and have j point to her favorite school a ∈ S. Since j purchases the most expensive priority,

j can afford any priority, and therefore j must purchase a priority at a. Some student, possibly

j herself, sells a priority to j for the price π1. Label the student with the highest priority at a

with k. Since values are monotonic, k must have wealth at least π1. Since each student spends her

entire wealth (Lemma 1) and π1 is the price of the most expensive priority, k must have wealth

exactly equal to π1 and must purchase a priority for price π1, and therefore k ∈ I1. We continue

the process of taking a student in I1, pointing to her favorite school (she must purchase a priority

at that school), and then pointing to the student with the highest priority at that school, and so

on. Due to finite number of students and schools, eventually we must repeat a student. This is

exactly a top trading cycle, and each student in the cycle is a member of I1.

Now suppose that we have removed some subset of students I ′1 ⊆ I1 who have formed trading

cycles and consider a student ĵ ∈ I1 \ I ′1, if there exists any. As before, have ĵ point to her favorite

school with remaining capacity, â. Note that â is ĵ’s favorite school as ĵ can afford any priority.

Some student, possibly ĵ herself, sells a priority to ĵ for the price π1. Label the student in I1 \ I ′1
with the highest priority at â with k̂. By Lemma 1 and the arguments explained for student k,

ν(rank(k̂, â), â) = π1 and k̂ ∈ I1. By following the same argument we can represent all students

in I1 via top trading cycles and they are assigned to their most preferred school. Therefore, each

student who purchases a priority that costs π1 receives the same assignment as in TTC.

Similarly, let π2 be the value of the most expensive priority of students in I \ I1, let S2 ={
(rank(i, a), a)|ν(rank(i, a), a) = π2 for a ∈ S and i ∈ I \ I1

}
. Note that, if π1 ≥ ν(rank(i′, a), a) >

π2, then i′ ∈ I1 and by the definition of the competitive equilibrium the priorities with price be-

tween π1 and π2 are not sold or bought. Let I2 be the set of students that purchase a priority

for price π2. By Lemma 1, I2 6= ∅. Consider any j ∈ I2 and have j point to her favorite school

13We say a cycle is a top trading cycle if it occurs under TTC.
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among the ones with remaining seats after the students in I1 and their assigned seats are removed.

Denote that school with a. Since j purchases the most expensive priority among the remaining

ones, and a is her favorite remaining school, j must purchase a priority at a. Some student in I \I1,

possibly j herself, sells a priority to j for the price π2. Label the student with the highest priority

at a among the ones in I \ I1 with k. Since values are monotonic, k must have wealth at least π2.

Since each student spends her entire wealth (Lemma 1) and π2 is the price of the most expensive

remaining priority, k must have wealth exactly equal to π2 and must purchase a priority for price

π2, and therefore k ∈ I2. We continue the process of taking another student in I2, pointing to

her favorite school (she must purchase a priority at that school), and then pointing to the student

with the highest priority at that school, and so on. Due to finite number of students and schools,

eventually we must repeat a student. This is exactly a top trading cycle, and each student in the

cycle is a member of I2. By following the same argument we can represent all students in I2 via

top trading cycles and they are assigned to their most preferred school among the remaining ones

once the students in I1 together with their assignments are removed. Therefore, each student who

purchases a priority that costs π2 receives the same assignment as in TTC.

By following the same way for the remaining students, we have the desired result.

We show by example that when the prices of priorities are not weakly decreasing, then there is no

longer a unique competitive equilibrium assignment. This example is taken from Morrill (2015b).

Example 1. Suppose there are three students I = {i, j, k} and two schools S = {a, b}. School a

has a capacity of two while b has a capacity of one. Define P and � according to the following

rank-order lists:

Pi Pj Pk �a �b

b a b i j

a b a j k

∅ ∅ ∅ k i

Consider the following prices for priorities.

a b

50 100

100 60

0 0

Consider the allocation where j purchases and sells the second priority at a; k purchases and sells

the second priority at b; and i purchases and sells the first priority at a. Each student sells her
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most valuable priority, and each student purchases the best priority she can afford. Therefore, this

constitutes a competitive equilibrium. However, this assignment differs from the TTC assignment

which assigns i, j, and k to b, a, and a, respectively.

In Example 1 student j has one of the top qa priority at school a. Hence, in order to be assigned

to a j does not need to trade with i. Since a different set of trades occur, a different assignment is

made.

3 Conclusion

The existence of a competitive equilibrium allows for a natural interpretation of the TTC assign-

ment.14 For example, it is well known that a student may have justified envy under the TTC

assignment (Abdulkadiroglu and Sönmez, 2003).15 This has widely been interpreted as the TTC

assignment being unfair. However, the interpretation under a competitive equilibrium is quite dif-

ferent. Here, we consider what a priority is worth. A priority at a school is only valuable if it gains

you admittance to that school and there is excess demand for the school. If Bowling Green High

School is ranked first by all students but has capacity for only 200 freshman, then having the 201st

priority has the same worth as having the 800th priority. More precisely, neither of these priorities

have any worth at all as neither are high enough to gain admittance to the school. Similarly, if

all students rank Perrysburg high school last, then having the highest priority at Perrysburg has

no worth. Any student may attend Perrysburg if she chooses. Rather, the value of priorities are

determined by the familiar forces of supply and demand.

TTC mechanism has been criticized since it does not totally eliminate priority violations. Consider

the case where a student i is assigned to a by TTC, but there is a student j who desires a and has

a higher priority at a. Is this fair? In a competitive equilibrium, we have a different interpretation.

14There exist several characterizations of TTC for the school assignment problem (see Abdulkadirgolu and Che,

2010; Morrill, 2015a; Morrill, 2013a; and Dur, 2014). However, several of these characterizations only hold when

schools can be assigned to only one student (Abdulkadiroglu and Che, 2010, and Morrill 2013) and the general

characterizations in Morrill (2015a) and Dur (2014) utilize at least one technical condition that may be difficult for

a school board to interpret. In a recent and independent work, Leshno and Lo (2017) provide a characterization

of TTC mechanism by using a continuum model. In particular, they show that TTC assignment can be described

by n2 admission thresholds. Similar to this current work, the threshold matrix and the priorities together can be

interpreted as prices and endowments in a Walrasian economy.
15Student i is said to have justified envy if i is not matched to school s, i prefers s to her assignment, and i has

higher priority at s than one of the students assigned to s.
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Neither i nor j’s priority at a is particularly valuable as neither has a high enough priority to gain

them admittance to a. However, i is willing to give up her claim to a school that is just as sought

after as a. In contrast, student j has no priority at any school that is valuable (or at least valuable

enough). In terms of what the student gives up, the assignment of i instead of j to a is quite fair;

i is willing to give up something of more value than j is able.
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