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Abstract

Kojima and Manea (2010) present two characterizations of when
an allocation rule corresponds to the agent-proposing deferred accep-
tance algorithm for some substitutable priority rule of the objects
being assigned. Building on their results we characterize when an allo-
cation rule is outcome equivalent to the deferred acceptance algorithm
for every substitutable priority rule. In particular, an assignment rule
satisfies mutual best if an agent is always assigned her most preferred
object whenever she has the highest priority for it. This mild require-
ment is a necessary but far from sufficient condition for an assignment
rule to be stable. We demonstrate that any allocation mechanism that
satisfies mutual best along with non-wastefulness, population mono-
tonicity and either individually rational monotonicity or weak Maskin
monotonicity not only is a stable assignment mechanism but is equiv-
alent to the agent proposing deferred acceptance algorithm.

†North Carolina State University. Email address: thayer morrill@ncsu.edu. I would
like to thank Fuhito Kojima and Melinda Morrill for their helpful comments.
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1 Introduction

A recent paper by Kojima and Manea (2010), hereafter K&M, presents an ax-

iomatic characterization of when an allocation rule corresponds to the agent-

proposing deferred acceptance algorithm for some substitutable priority rule

of the objects being allocated. Building on their results, we characterize when

an allocation rule is outcome equivalent to the deferred acceptance algorithm

for every substitutable priority rule.

K&M provide two characterizations of which their second is perhaps more

intuitive. An allocation rule is non-wasteful if whenever an agent prefers an

object to her assignment, the preferred object has been allocated its quota

of agents. An allocation rule is population monotonic if whenever the set of

agents being assigned is reduced, all remaining agents are made weakly better

off. Finally, a set of preferences R′ monotonically transforms preferences

R at assignment µ if any object preferred to µ under R′ is also preferred

to µ under R. An allocation rule φ satisfies weak Maskin monotonicity if

whenever R′ is a monotonic transformation of R at φ(R), then every agent

weakly prefers φ(R′) to φ(R) under R′. Remarkably, K&M demonstrate

that any allocation rule satisfying weak Maskin monotonicity, population

monotonicity, and non-wastefulness is equivalent to the deferred acceptance

rule for some substitutable priority rule.

Our paper provides a characterization of the deferred acceptance rule for

every substitutable priority rule. An assignment mechanism satisfies mutual

best (MB) if whenever an agent has highest priority at her top choice, then

she is assigned her top choice. This weak assumption is clearly necessary

but far from sufficient for an allocation to be stable. Surprisingly, MB is

enough to strengthen either characterization introduced by K&M from being

equivalent to the deferred acceptance algorithm for at least one substitutable

priority rule to being equivalent to the deferred acceptance algorithm for

every substitutable priority rule.
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To emphasize the distinction between K&M’s characterization and the cur-

rent paper’s contribution we compare the serial dictatorship1 to the deferred

acceptance algorithm. In a serial dictatorship, each agent is assigned a num-

ber and the agent with the highest number is allowed to choose her most

preferred object. The agent with the second highest number chooses from

the remaining objects, and so on. This mechanism satisfies all of K&M’s ax-

ioms. It is both weakly Maskin and IR monotonic, it is non-wasteful, and it

is population monotonic. Indeed, the serial dictatorship is equivalent to the

deferred acceptance algorithm for one priority rule over the objects. Namely,

if the agent with highest number has highest priority for every object, the

agent with the second highest number has second highest priority for every

object, and so on. However, except for this particular instance of priorities,

the serial dictatorship bears little resemblance to the deferred acceptance al-

gorithm. Since the serial dictatorship completely disregards the priorities of

the objects, it is only a coincidence when the two mechanisms produce the

same assignment.

This paper provides an alternative to characterizing the deferred acceptance

algorithm in terms of stability. Gale and Shapley (1962) show that the de-

ferred acceptance algorithm is the unique stable assignment that is weakly

preferred by the students to all other stable assignments. Alcalde and Bar-

bera (1994) characterize the deferred acceptance algorithm as the unique

stable and strategy-proof mechanism. Balinski and Sonmez (1999) demon-

strate the deferred acceptance algorithm is the unique allocation rule that

is stable and respects improvements.2 Our result is most similar to K&M’s

Lemma 2 which demonstrates the deferred acceptance algorithm is the unique

mechanism that satisfies stability and weak Maskin monotonicity. The key

difference is that our condition of MB is much weaker than stability. An-

1For a detailed discussion of serial dictatorships, see Abdulkadiroglu and Sonmez
(1998).

2An allocation rule respects improvements if an agent is made weakly better off when-
ever her priority for every object weakly increases.
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other paper that is closely related to K&M is Ehlers and Klaus (2009). They

provide several alternative characterizations of the deferred acceptance algo-

rithm when priorities are restricted to be responsive.

2 Framework

We use the framework from K&M with the notable exception that the mech-

anisms we consider are a function of both the preferences of the agents and

the priority structure for each object being assigned. We fix a set of agents

N along with a set of objects O. There exists one null object, denoted ∅,
with the interpretation that being assigned the null object is equivalent to

the agent being unassigned. Each object a ∈ O has a quota qa and q∅ = |N |.
An allocation µ = (µi) is a vector such that for every i ∈ N , µi ∈ O∪{∅} and

for each a ∈ O ∪ {∅}, | {i ∈ N |µi = a} | ≤ qa. We let µa = {i ∈ N |µi = a}.

Each agent i has a preference relation Ri over all types O ∪ {∅}. Ri is

strict, complete, transitive, and antisymmetric. Pi denotes the agents strict

preferences over the objects, aPib if and only if aRib and a 6= b. An object

is acceptable if it is preferred to the null object. R = (Ri)i∈N denotes the

preference profile of all agents, and RN ′ = (Ri)i∈N ′ denotes the preferences

of any subset N ′ ⊂ N . We also adopt the notation R−M = RN\M and

R−i = RN\{i}. We write µRµ′ if and only if µiRiµ
′
i for all i ∈ N .

A priority for an object a ∈ O is a correspondence Ca : 2N → 2N , such

that Ca(N ′) ⊆ N ′ and |Ca(N ′)| ≤ qa for all N ′ ⊆ N . Intuitively, Ca(N ′)

is the set of agents that a “chooses” when given the choice of any agent in

N ′. In the context of school choice, Ca(N ′) is interpreted to be the students

with highest priority at school a. The priority Ca is substitutable if for every

i ∈ N ′′ ⊂ N ′ ⊂ N , if i ∈ Ca(N ′) then i ∈ Ca(N ′′). The priority Ca is

acceptant if for all N ′ ⊆ N , |Ca(N ′)| = min {|N ′|, qa}.

4



An assignment µ is individually rational if for every student i, µiRi∅. An

assignment is blocked if there exist a student i and a school a such that aPiµi

and i ∈ Ca(µa ∪ i). We say i and a form a blocking pair. If there does not

exist a blocking pair, then the allocation is stable.

We denote by R, C, and A the sets of possible preference relations, pri-

ority rules, and assignments, respectively. An allocation rule is a function

φ : R×C → A. An allocation rule φ is stable if φ(R,C) is a stable allocation

for all R ∈ R, C ∈ C. A particular important mechanism and the focus of

this paper is Gale and Shapley’s (1962) deferred acceptance algorithm. The

student proposing version of the algorithm is as follows:

Step 1. Each student proposes to her most preferred, acceptable school. Each

school tentatively accepts the group of students with highest priority (alter-

natively, the most preferred group) among those students that have proposed

to it. The school rejects all other students.

Step i. Each student that was rejected in the previous round proposes to her

most preferred school among those that are acceptable and have not yet re-

jected the student. Each school tentatively accepts the highest priority group

of students among those that have applied and those that were tentatively

accepted in the previous round. The school rejects the other applicants.

The deferred acceptance algorithm concludes when there are no new propos-

als from students. When school priorities are substitutable, the algorithm

results in a stable assignment that is weakly preferred by every student to any

other stable assignment.3 The deferred acceptance rule, DA(R,C) outputs

the assignment that is generated when the deferred-acceptance algorithm is

applied to (R,C).

The key difference between this framework and that of K&M is that except

for one section of their paper the priorities of the objects are not primitive

to the model. Part of what is remarkable about their results is that they

3See Roth and Sotomayor (1990).
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are able to characterize when an assignment rule corresponds to the deferred

acceptance algorithm using priority-free conditions.

R′i is an individually rational monotonic transformation of Ri at a ∈ O∪{∅}
(R′i i.r.m.t. Ri at a) if any object that is preferred to both a and ∅ under R′i
is preferred to both a and ∅ under Ri. R

′ is an IR monotonic transformation

of R at an allocation µ (R′ i.r.m.t. R at µ) if R′i i.r.m.t. Ri at µi for all

i ∈ N . An allocation rule φ satisfies individualy rational monotonicity (IR

monotonicity) if R′ i.r.m.t R at φ(R) implies φ(R′)R′φ(R). An allocation

rule φ is non-wasteful if aPiφi(R) implies |φa(R)| = qa. K&M demonstrate

that that an allocation rule is the deferred acceptance rule for some acceptant

substitutable priority rule if and only if it satisfies IR monotonicity and non-

wastefulness.

For their second characterization, they define R′i to be a monotonic trans-

formation of Ri at a ∈ O ∪ {∅} (r′i m.t. Ri at a) if all objects ranked above

a under R′i are ranked above a under Ri. R
′ is a monotonic transformation

of an allocation rule µ (R′ m.t. R at µ) if R′i m.t. Ri at µi for all i ∈ N .

An allocation rule φ satisfies weak Maskin monotonicity if R′ m.t. R at

φ(R) implies φ(R′)R′φ(R). For any N ′ ⊆ N and any preference profile R,

let (RN ′ , R∅N\N ′) denote the preference profile that leaves Ri unchanged for

each i ∈ N ′ and ranks ∅ first for each i ∈ N \ N ′. This is equivalent to

considering the assignment problem restricted to the subset N ′. An alloca-

tion rule φ is population monotonic if φi(RN ′ , R∅N\N ′ , C)Riφi(R,C) for every

i ∈ N ′, N ′ ⊆ N,R ∈ R, and C ∈ C. IR monotonicity implies both weak

Maskin monotonicity and population monotonicity, but population mono-

tonicity and weak Maskin monotonicity are possibly easier to interpret. For

their second characterization, they demonstrate that an allocation rule φ

is the deferred acceptance rule for some acceptant substitutable priority C

if and only if φ satisfies non-wastefulness, weak Maskin monotonicity, and

population monotonicity.
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3 An extension of the deferred acceptance

axioms

K&M’s results are remarkable in that their conditions are priority-free and

yet powerful enough to guarantee that the mechanism corresponds to the

deferred acceptance rule for some priority rule. However, this comes at a

cost. Their characterization only guarantees that the assignment corresponds

to the deferred acceptance rule for some priority rule. It does not guarantee

that the rule is equivalent to the deferred acceptance rule for the relevant

priority rule or even if it is, whether or not it will continue to be equivalent

to the deferred acceptance rule if the priority rule is changed.

In this section, we characterize the allocation rules that are equivalent to the

deferred acceptance algorithm for every substitutable priority rule. This is

critical in the context of a real-world assignment problem. Any assignment

rule being implemented must be adaptable to changes in the priority rule for

the objects. This is obvious if the priority rule represents the preferences of

the objects and these preferences are at the discretion of the objects being

matched, such as in the doctor-hospital resident match. However, this is

equally true if the priority rule is fixed such as in the application to Boston

public schools. A school district may change the priority rules from year to

year. Moreover, the student body changes every year.

Surprisingly, we require only a mild assumption.

Definition 1. Let N∗ be the set of agents that find some object acceptable.

An assignment mechanism φ(R,C) satisfies mutual best (MB) if aPib for

every b ∈ O \ {a} and i ∈ Ca(N∗) imply φi(R,C) = a.

Any mechanism that violates MB violates stability and is therefore not equiv-

alent to the deferred acceptance algorithm. However, MB is far from a suffi-
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cient condition for stability. For example, consider the Boston mechanism.4

In the first round of the Boston mechanism, each school accepts up to its

capacity the highest priority students among those that have ranked it first.

Those schools that are at capacity are removed. In the second round, each

school accepts up to its capacity the highest priority students among those

students that have ranked it first among the remaining schools. Again, all

schools that are at capacity are removed, and the process continues until all

students are assigned.

The Boston mechanism satisfies MB as a student that has highest priority at

her most preferred school will be accepted in the first round. However, the

Boston mechanism need not be stable. For example, suppose there are three

students i, j, and k, two schools A and B, and each school has a capacity of

one student. Consider the following strict orders for schools:

�A �B

i j

j i

k k

and the following preferences of the students:

Ri Rj Rk

B B A

A A B

The Boston mechanism lasts only one round and assigns j to B, k to A, and

leaves i unassigned. However, i and A block this assignment.

MB is a basic and clearly desirable property of an assignment rule; how-

ever, there are several interesting examples of mechanisms that violate it.

4See Abdulkadiroglu and Sonmez (2003). Other examples of non-stable algorithms that
satisfy MB are the Newcastle, Birmingham, and Edinburgh algorithms described in Roth
(1991).
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Both the National Football League draft and the procedure to assign Naval

Acadamy graduates to their initial military position violate MB.5 Another

interesting rule that violates MB is the linear programming matching pro-

cedure described in Roth (1991). This assignment rule was used to assign

medical students to positions at the London Hospital and the University of

Cambridge. Each student and hospital submits a rank ordered list of prefer-

ences, and using these lists, each pairing is assigned a numerical weight. For

example, if a student and hospital rank each other first, a (1,1) pairing, then

that match was assigned a weight of 40. Similarly, a (1,2) or (2,1) pairing

was given a weight of 34 points, and so on. A linear programming procedure

then determines an assignment that maximizes the sum of the weights of the

matches. As Roth illustrates with an example, this procedure may fail to

make all (1,1) matches.6

What is surprising is that despite MB being a very weak condition, it is

enough to strengthen both of K&M’s characterization to any substitutable

priority rule.

Theorem 1. An assignment mechanism φ satisfies non-wastefulness, pop-

ulation monotonicity, weak Maskin monotonicity, and MB if and only if

φ(R,C) = DA(R,C) for every substitutable choice rule C and every R ∈ R.

Proof. Theorem 2 from K&M establishes that the deferred acceptance algo-

rithm satisfies non-wastefulness, weak Maskin monotonicity, and population

monotonicity. The deferred acceptance algorithm outputs a stable assign-

ment. Therefore, it satisfies MB as MB is a necessary condition for stability.

We prove the “only if” part using two lemmas.

Lemma 1. Suppose φ satisfies non-wastefulness, population monotonicity,

and MB over the set of substitutable priorities. Then φ(R,C) is stable for

5Both of these mechanisms are discussed in Roth and Sotomayor (1990).
6I am grateful to Fuhito Kojima for pointing out this example.
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any substitutable priority C.

Proof. For convenience, let µ = φ(R,C). Since φ is non-wasteful, µ must be

individually rational as by definition ∅ is never scarce. Suppose for contra-

diction there exists a substitutable priority C and R ∈ R such that φ(R,C)

has a blocking pair. Let agent i ∈ N , and object a ∈ O be such that:

aPiµi (1)

i ∈ Ca({i} ∪ µa) (2)

Since φ is non-wasteful, it must be that |µa| = qa. Define R′ and R′′ as

follows:

R′j =


a, µi, ∅ j = i and µi 6= ∅
a, ∅ j = i and µi = ∅
a, ∅ j ∈ µa

Rj j 6∈ µa ∪ {i}

R′′j =

{
R′j j ∈ µa ∪ {i}
∅ j 6∈ µa ∪ {i}

Let µ′ = φ(R′, C). R′ is a monotonic transformation of R at µ. Therefore,

by weak Maskin monotonicity, µ′jR
′
jµj for each agent j. In particular, µ′j = a

for each j ∈ µa. Let µ′′ = φ(R′′, C). By population monotonicity, µ′′R′′jµ
′

for each j ∈ {i} ∪ µa. This implies for each j ∈ µa, µ′′j = µ′j = a. Under

R′′, the set of agents that find some object acceptable is {i} ∪ µa. Since a

is i’s top choice under R′′ and i ∈ Ca({i} ∪ µa), by MB µ′′i = a. Therefore,

{i} ∪ µa ⊆ µ′′a. Since | {i} ∪ µa| = qa + 1, this is a contradiction. Therefore,

φ(R,C) is a stable assignment.

The final step of the proof is to demonstrate that for substitutable priority

rules, a stable allocation rule that satisfies weak Maskin monotonicity must

be equivalent to the deferred acceptance rule.
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Lemma 2. Consider any substitutable C ∈ C. If a stable allocation rule

φ satisfies weak Maskin monotonicity then φ(R,C) = DA(R,C) for every

R ∈ R.7

Proof. Consider any substitutable C ∈ C, R ∈ R, and any stable, weakly

Maskin monotonic mechanism φ. Let µ = DA(R,C). As is well known, µ is

the agent optimal stable assignment. Let R′ denote the truncation of R at µ

which is to say if µiPia for some school a, then ∅P ′ia but otherwise Ri = R′i.

It is straightforward to verify that µ is stable under R′. We will demonstrate

that µ is the unique stable assignment under R′.

Let µ′ denote the agent optimal stable assignment underR′ (µ′ = DA(R′, C)).

µ′R′µ since µ is stable under R′ and µ′ is agent optimal stable, but suppose

for contradiction there exists an i ∈ N such that µ′iP
′
iµi. As µ is agent opti-

mal stable under R, µ′ is not stable under R. Since µ′Rµ any blocking pair

of µ′ under R continues to block µ′ under R′, a contradiction. Therefore,

µ = µ′. Suppose for contradiction there exists a ν 6= µ where ν is stable un-

der R′. As µ is agent optimal under R′, µR′ν. As ν is individually rational,

for every i ∈ N , νi ∈ {µi, ∅}. Therefore, for every object a, νa ⊂ µa. As

ν 6= µ, there exists an i ∈ N such that νi = ∅ but for some object a, µi = a.

Therefore, νa ⊂ νa ∪ {i} ⊂ µa. By the stability of µ, i ∈ Ca(µa). Therefore,

by the substitutability of C, i ∈ Ca(νa ∪ {i}). Since aP ′i∅, i and a block ν,

contradicting the stability of ν.

Therefore, µ is the unique stable assignment under R′. As φ is a stable

mechanism, φ(R′, C) = µ. However, R is a monotonic transformation of R′

at µ. Therefore, φ(R,C)Rφ(R′, C) = µ. As µ is agent optimal stable under

R and φ(R,C) is stable, φ(R,C) = µ.

7Lemma 2 is closely related to but slightly more general than a result in K&M. They
demonstrate that for acceptant substitutable priority rules, a stable allocation rule satisfies
weak Maskin monotonicity only if it is the deferred acceptance rule. Our proof is a
modification of their proof.
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Since φ is weakly Maskin monotonic by assumption and we have demon-

strated that φ outputs a stable assignment for all substitutable priority rules,

Lemma 2 implies that φ(R,C) = DA(R,C) for every substitutable choice

rule C and every R ∈ R

Theorem 1 limits attention to substitutable priority rules. The next propo-

sition demonstrates that for acceptant8 priority rules, this is a necessary

restriction.

Proposition 1. Fix an acceptant choice rule C. If an assignment mechanism

φ satisfies non-wastefulness, population monotonicity, and MB for all R ∈ R,

then C is substitutable.

Proof. Consider any i ∈ N ′′ ⊆ N ′ ⊆ N and any object a such that i ∈
Ca(N ′). Define R′ and R′′ as follows:

R′j =

{
a, ∅ j ∈ N ′

∅ j ∈ N \N ′

R′′j =

{
a, ∅ j ∈ N ′′

∅ j ∈ N \N ′′

By MB, Ca(N ′) ⊆ φa(R′, C). Since C is acceptant, Ca(N ′) = φa(R′, C). In

particular, since i ∈ Ca(N ′), φi(R
′, C) = a. By population monotonicity,

φi(R
′′, C) = a. But again, since every agent’s top choice is a, by MB and the

fact that C is acceptant, Ca(N ′′) = φa(R′′, C). Therefore, i ∈ Ca(N ′′) which

implies that C is substitutable.

We next consider K&M’s first characterization. The extension of their result

to every substitutable priority order follows as an immediate corollary to

Theorem 1.

8The priority Ca is acceptant if for all N ′ ⊆ N , |Ca(N ′)| = min {|N ′|, qa}.
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Theorem 2. An assignment mechanism φ satisfies non-wastefulness, IR

monotonicity, and MB if and only if φ(R,C) = DA(R,C) for every sub-

stitutable choice rule C and every R ∈ R.

Proof. Theorem 2 is an immediate corollary of Theorem 1. IR monotonic-

ity implies both weak Maskin monotonicity and population monotonicity.

Therefore, any mechanism that satisfies non-wastefulness, IR monotonic-

ity, and MB also satisfies non-wastefulness, population monotonicity, weak

Maskin monotonicity, and MB and is equivalent to the deferred acceptance

algorithm for every substitutable priority rule by Theorem 1. K&M prove

that the deferred acceptance algorithm satisfies IR monotonicity (their The-

orem 1).

4 Independence

We establish the independence of the axioms in Theorems 1 and 2 through

a series of examples. For each example, we assume there are at least two ob-

jects a and b, that |N | ≥ 2, and that qa < |N |−1. First we demonstrate that

mutual best (MB) is independent of non-wastefulness, weak-Maskin mono-

tonicity, population monotonicity, and IR monotonicity. As described in the

introduction, the serial dictatorship satisfies all of the axioms in Theorem 1

and 2 except for MB. Example 1 is a different mechanism that satisfies all

axioms but MB.

Example 1. (MB Fails) Consider the following mechanism. The mechanism

accepts the preferences of the agents and the priorities of the objects. It then

disregards the priorities of the objects and runs the deferred-acceptance algo-

rithm as if the priorities of each object are to rank the agents in alphabetical

order. As this is an instance of the deferred-acceptance algorithm, it satisfies

non-wastefulness, weak-Maskin monotonicity, IR monotonicity, and popula-

tion monotonicity. However, this mechanism does not satisfy MB.
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Given a rank-order list, the top trading cycles algorithm satisfies all of the

axioms except for population monotonicity and IR monotonicity.

Example 2. (Population monotonicity fails) Given any priority rule C, if C

consists of rank-order lists for each object, then we run top trading cycles.

If Ca is not a rank order list for any object a, then we run the deferred

acceptance algorithm. Top trading cycles satisfies weak Maskin monotonicity

(Papai (2000) and Takamiya (2001)), and it is non-wasteful. However, it

is not population monotonic (Abdulkadiroglu and Sonmez (2003)). Since

IR monotonicity implies population monotonicity, this mechanism is not IR

monotonic. Finally, top trading cycles does satisfy MB.

To establish the independence of non-wastefulness and weak Maskin mono-

tonicity, we modify two examples from K&M.

Example 3. (Wasteful; modified from K&M’s Example 2) For any i ∈ N

and a ∈ O, if i lists a first and i ∈ Ca(N), then assign i to a. Otherwise leave

all objects unassigned. This rule is trivially population monotonic, weakly

Maskin monotonic, IR monotonic, and satisfies MB. However, it is wasteful.

Example 4. (Not weakly Maskin montonic; modified from K&M’s Example

4) We define an allocation rule as follows. For any i ∈ N and a ∈ O, if i

lists a first and i ∈ Ca(N), then assign i to a. For the remaining objects, fix

an agent j. If j reports Ra
j : a, ∅, then we run a serial dictatorship for the

remaining objects and let j pick first. The ordering is otherwise arbitrary.

If j reports anything else, then we have j pick last but otherwise keep the

same ordering. This rule satisfies MB, is non-wasteful, and is population

monotonic. However, it does not satisfy weak Maskin monotonicity. To see

this, consider any instance with |N | − qa > qa and j 6∈ Ca(N). Define R as

follows:

Ri =

{
b, ∅ i ∈ Ca(N)

a, ∅ i 6∈ Ca(N)
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Let R′j = a, b, ∅ and keep R′i = Ri for i 6= j. Then φj(R,C) = a. More-

over, R′ is a m.t. of R at φ(R,C); however, φj(R
′, C) 6= a. Therefore,

φj(R,C)R′jφj(R
′, C) demonstrating that φ is not weakly Maskin monotonic.

5 Conclusion

By introducing a fourth axiom, mutual best, we characterize when a mech-

anism is outcome equivalent to the deferred acceptance algorithm for every

substitutable priority rule of the objects being assigned. Mutual best is a

significantly weaker assumption than stability. Moreover, it is clearly a de-

sirable property for practical assignment rules.

Our extension sheds further light on the mechanics of the deferred acceptance

algorithm and provides an instructive basis for contrasting it with other well

studied assignment rules such as top trading cycles and serial dictatorships.
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