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Abstract

It is well known that it is impossible for a mechanism to be strategyproof,

Pareto efficient, and eliminate justified envy. However, little is known to

what extent a strategyproof and efficient mechanism can limit justified envy.

We define an assignment to be unjust if a student i is not assigned to a school

a that she prefers to her own assignment, i has higher priority at a than one

of the students assigned to a, and none of the students ranked higher at a

than i are dependent on j. We prove that Top Trading Cycles is the unique

mechanism that is strategyproof, efficient, and just. This demonstrates that

any strictly stronger nothing of fairness is either unachievable by a strate-

gyproof and efficient mechanism or else logically equivalent to justness in

this class of mechanisms. We extend this characterization to the general

case when schools may have arbitrary capacities by introducing the concept

of reducibility.
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1 Introduction

The school choice problem is one of the most important and well-studied prob-

lems in market design. The problem considers mechanisms for assigning students

to public schools. Here, only students are considered to be strategic agents and

the schools are treated as objects without preferences. However, a school board,

which chooses the assignment algorithm, certainly has preferences over the re-

sulting assignment. Ideally, the school board would like the student assignment

to be both Pareto efficient and fair. Eliminating justified envy is widely used as

the definition of a fair assignment,1 but unfortunately, it is impossible for an as-

signment mechanism to be Pareto efficient and always eliminate justified envy.2

Therefore a school board must choose between making an efficient assignment or

an assignment that eliminates justified envy. Given this choice, the overwhelm-

1Student i is said to have justified envy if there is a school a such that i prefers a to her assign-

ment, and i has higher priority at a than one of the students assigned to s. This is closely related to

stability in the college admissions problem (Gale and Shapley, 1962). The critical difference is that

in the school assignment problem, schools are treated as objects without preferences where as in

the college admissions problem, schools are treated as agents with preferences over students. See

the seminal paper Abdulkadiroglu and Sonmez (2003) for a detailed discussion of the similarities

and differences between these two problems.
2See Example 1 for an assignment problem where the unique assignment eliminating justified

envy is Pareto inefficient. This example was taken from Abdulkadiroglu and Sonmez (2003). The

incompatibility of efficiency and stability was demonstrated in Roth (1982).

2



ing majority of school districts have chosen to eliminate justified envy.3 Clearly

making “fair” assignments is of central importance to school boards. Therefore,

it is surprising that there has been relatively little discussion in the literature as to

what constitutes a fair assignment.4

It is clear that if no student has justified envy, then an assignment is fair. What

is less clear is whether or not every instance of justified envy means the assign-

ment is unfair. The central question this paper addresses is to what extent is a

strategyproof and efficient mechanism able to limit justified envy. Towards this

aim, we introduce a weaker interpretation of fairness which balances respecting a

student’s priority at a school with respecting the assignments of students ranked

higher than her at the school. Specifically, we consider an assignment unjust if a

student i prefers a school a to her assignment, has higher priority at a than one of

the students j that is assigned to a, and none of the the students ranked higher than

i at a depend on j for her assignment. The key consideration is what it means for

student i to depend on student j. We define i to depend on j if j, by submitting an

alternative preference profile, is able to receive i’s assignment. When i depends

3Cities that have adopted a version of the student-proposing Deferred Acceptance algorithm in-

clude New York City (Abdulkadiroglu et al. 2005b, 2009), Boston (Abdulkadiroglu et al. 2005a),

and Chicago (Pathak and Sonmez, forthcoming). Denver began using DA in 2012. Recently, DA

has been adopted by all local authorities in England (Pathak and Sonmez, forthcoming). The only

school district we know of that has implemented Top Trading Cycles is New Orleans.
4This paper considers fairness from an ex-post perspective. A number of papers have consid-

ered fairness in assignment mechanisms from an ex-ante perspective. In that context, a mechanism

is typically interpreted as fair if it is symmetric: two agents who submit the same preference pro-

file receive the same distribution over objects. An alternative fairness notion in this environment is

envy-freeness: each agent first-order stochastically prefers her allocation to the allocation of any

other agent. See Bogomolnaia and Moulin (2001), Che and Kojima (2010), and Liu and Pycia

(2013) among others for a more detailed discussion of fairness in this environment.
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on j, then changing j’s assignment has the potential to change i’s assignment.

Therefore, if i has justified envy of j at a, but a higher ranked student k depends

on j, then we do not honor i’s objection as it has the potential to harm a higher

ranked student. Intuitively, we take the stance that an objection should be honored

only if doing so has no potential to harm any of the higher ranked students.

Our main result is to demonstrate that there is no strictly stronger fairness con-

dition than justness that is compatible with strategyproofness and efficiency. We

do this by proving that Top Trading Cycles (hereafter TTC) is the unique mecha-

nism that is strategyproof, efficient, and just. This demonstrates that any strictly

stronger fairness concept is either impossible to achieve by a strategyproof and ef-

ficient mechanism, or else it is equivalent to justness in this class of mechanisms.

This characterization of TTC also provides a new way of understanding an impor-

tant assignment mechanism. TTC does not eliminate justified envy, but there is no

strategyproof and efficient mechanism that is fairer than TTC. Note that we do not

claim that TTC is the fairest possible mechanism or that justness is the strongest

possible criterion compatible with strategyproofness and efficiency. There may

be conditions logically independent from justness that are satisfied by alternate

mechanisms. This characterization holds when schools have a capacity of one.

We extend this characterization to the general case when schools may have arbi-

trary capacities by introducing the concept of reducibility. Intuitively, a problem

is reducible if large problems can always be separated into smaller subproblems.

We show that Top Trading Cycles is the only mechanism that is strategyproof,

efficient, just, and reducible.
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1.1 Relation to the Literature

Our paper contributes to a substantial literature studying the extent to which fair-

ness, efficiency, and strategyproofness are compatible for assignment problems.

In addition to introducing the deferred acceptance algorithm, Gale and Shapley

(1962) famously prove that among stable assignments for the college admissions

problem, the assignment made by the student-proposing deferred acceptance al-

gorithm Pareto dominates all other stable assignments from the perspective of

the students. This result was applied to the school assignment problem first by

Balinksi and Sonmez (1999) and then by Abdulkadiroglu and Sonmez (2003).

Since only the students have preferences in the school assignment problem, these

papers point out that there exists a Pareto optimal fair assignment. However, Ab-

dulkadiroglu and Sonmez (2003) demonstrate that there is a fundamental tension

between efficiency and fairness in the school assignment problem. It is impossible

for a mechanism to be both fair and efficient. Kesten (2010) demonstrates that this

tension between efficiency and fairness is exasperated when we restrict ourselves

to strategyproof mechanisms. Specifically, he demonstrates that there is no strate-

gyproof mechanism that always selects a fair and efficient assignment even when

one exists. Abdulkadiroglu, Pathak, and Roth (2009) analyze both theoretically

and empirically the efficiency loss associated with strategyproofness and fairness.

In particular, they demonstrate that there exists no strategyproof mechanism that

Pareto improves on the student proposing Deferred Acceptance algorithm with

single tie breaking. In their analysis, 1.9% of the students could be matched to

a school they strictly prefer without harming others in an alternative fair assign-

ment. A further 5.5% of the students could be matched to a school they strictly

prefer without harming others if we do not impose fairness.

The above papers consider deterministic mechanisms, but the interplay between
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fairness, efficiency, and strategyproofness has also been studied in the random

environment. Here, symmetry is widely used as the definition of a fair mechanism.

Bogomolnaia and Moulin (2001) demonstrate that no symmetric, strategyproof

mechanism can be efficient. For example, a uniform randomization over TTC

is strategyproof, symmetric, and ex-post efficient, but it is not ex-ante efficient.

However, Kojima and Manea (2010b) and Che and Kojima (2010) demonstrate

that this impossibility does not hold asymptotically in large markets. Strikingly,

Liu and Pycia (2013) demonstrate that all asymptotically efficient, symmetric,

and asymptotically strategyproof mechanisms converge to the same allocation.

Of interest to the current paper, they demonstrate that uniform randomizations

over TTC are asymptotically strategyproof, efficient, and symmetric (fair).

There have also been several recent papers that characterize TTC. Most closely re-

lated to this paper is Morrill (2013b) which demonstrates that when objects have

unit capacities, TTC is the unique mechanism that is strategyproof, efficient, sat-

isfies mutual best, and independent of irrelevant rankings.5 The current paper has

several advantages over Morrill (2013b). First, by characterizing TTC only in

terms of strategyproofness, efficiency, and a fairness condition, our characteriza-

tion provides a simpler answer as to what differentiates TTC from all other strat-

egyproof and efficient mechanisms. Second, mutual best is a very weak fairness

condition. While it is interesting from a characterization standpoint how weak of a

condition is required to characterize the assignment, a policy maker is much more

interested in how strong a notion of fairness that TTC satisfies. Finally, and most

importantly, our characterization extends to the general case where objects may

be assigned to multiple agents. The characterization in Morrill (2013b) does not

5Intuitively, a mechanism satisfies independence of irrelevant rankings if, when a student’s

ranking at a school never affects its own assignment, then it does not affect other students’ assign-

ments either. For a more precise definition, see Morrill (2013b).
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as TTC does not satisfy independence of irrelevant rankings when objects have

capacities greater than one.

Also closely related to the current paper are characterizations provided in Ab-

dulkadiroglu and Che (2010). This was the first paper to study what distinguishes

TTC from other Pareto efficient and strategyproof assignment mechanisms. They

demonstrate that TTC is the only such mechanism that recursively respects top

priorities. A just assignment respects top priorities, but justness is not a recursive

concept and therefore is quite different from recursively respecting top priorities.

Dur (2013) provides the first characterization of the general case. He shows that

TTC is the unique mechanism satisfying Pareto efficiency, strategyproofness, mu-

tual best, weak consistency, and resource monotonicity for top-ranked students.6

2 Model

We consider a finite set of agents I = {1, . . . , n} and a finite set of objects

O = {a, b, c, . . .} . Each agent i ∈ I has a complete, irreflexive, and transitive

preference relation Pi over O ∪ {∅}. ∅ represents an agent being unassigned, and

there is no limit to the number of agents that may be assigned to ∅. aPib indicates

6More generally, this paper contributes to the growing literature on characterizations of as-

signment mechanisms. Papai (2000) characterizes hierarchical exchange rules, a general class of

exchange rules which includes TTC. Pycia and Unver (2014) characterize a further generalization

of hierarchical exchange rules called trading cycles. Kojima and Manea (2010a) characterize DA

for some priorities of the objects. Morrill (2013a) extends this characterization to all substitutable

priorities. Kojima and Unver (2010) characterize the Boston assignment mechanism. For the

housing allocation problem with existing tenants, Sonmez and Unver (2010) provide a characteri-

zation of the you request my house-I get your turn mechanism introduced by Abdulkadiroglu and

Sonmez (1999).
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that i strictly prefers object a to b. Given Pi, we define the symmetric extension

Ri by aRib if and only if aPib or a = b.

The capacity of each object a ∈ O is given by qa, and we set q = {qa|a ∈ O}.
Each school a has a complete, irreflexive, and transitive priority rule �a over I .

In particular, i �a j is interpreted as agent i having a higher priority for object a

than agent j. We define � analogously to our definition of R.

We let P = (Pi)i∈I , �= (�a)a∈O, P−I′ = (Pi)i∈I\I′ , and �−O′= (�a)a∈O\O′ .

Throughout, I , O, and the quotas q are fixed, and we define the assignment prob-

lem by (P,�).

An allocation is a function µ : I → O ∪ {∅} such that for each a ∈ O,

| {i ∈ I|µ(i) = a} | ≤ qa where qa is the capacity of a. In a slight abuse of nota-

tion, for a set of agents I ′ ⊂ I , we define µ(I ′) = {a ∈ O|∃i ∈ I ′ such that µ(i) = a},
and set µ(a) = {i ∈ I|µ(i) = a}. Given allocations µ and µ′, we say µRµ′ if

µ(i)Riµ
′(i) for every i ∈ I .

An allocation is Pareto efficient if there does not exist another allocation ν such

that ν(i)Riµ(i) for every i ∈ I and ν(i)Piµ(i) for some i.

We denote byR, C, andA the sets of all possible preference relationships, priority

rules, and allocations, respectively. An allocation mechanism is a function φ :

R × C → A. A mechanism φ is strategyproof if reporting true preferences is

each agent’s dominant strategy. That is:

φ(R,�)(i)Riφ(R′i, R−i,�)(i)

for all R, �, i ∈ I , and R′i. For notational convenience, we will typically fix the

priority rule � and denote the mechanism φ(R,�) by φ(R).
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Abdulkadiroglu and Sonmez (2003) give detailed descriptions of TTC and DA.

Given strict preferences of students and strict priority lists for schools, TTC as-

signs students to schools according to the following algorithm. In each round,

each student points to her most preferred remaining school, and each school with

available capacity points to the remaining student with highest priority. As there

are a finite number of students, there must exist a cycle {o1, i1, . . . , oK , iK} such

that each oj and ij points to ij and oj+1, respectively (with oK+1 ≡ o1). For each

cycle, student ij is assigned to object oj+1, ij is removed, and the capacity of oj+1

is reduced by one. When a school has no remaining capacity, it is removed. The

algorithm terminates when all students are assigned or no school has any avail-

able capacity. For any R ∈ R, �∈ C, the mechanism TTC(R,�) outputs the

allocation made by TTC.

The student proposing version of DA is defined as follows. In the first round, each

student proposes to her most preferred school. Each school tentatively accepts stu-

dents up to its capacity and rejects the lowest priority students beyond its capacity.

In every subsequent round, each student rejected in the previous round proposes

to her most preferred school that has not already rejected her. Each school tenta-

tively accepts the highest priority students up to its capacity and rejects all others.

The algorithm terminates when there are no new proposals and tentative assign-

ments are made final. Roth and Sotomayor (1992) is an excellent resource for the

properties of DA.
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3 Just Assignments

Eliminating justified envy is the notion of fairness that is typically considered by

the literature. A student i has justified envy in assignment µ if there is a school

a and a student j such that aPiµ(i) and i �a j where µ(j) = a. An assignment

eliminates justified envy if no student has justified envy. It is well known that

the assignment made by DA not only eliminates justified envy but Pareto dom-

inates all other assignments that eliminate justified envy. However, Example 1

demonstrates that DA is not efficient. It is well known that TTC always makes an

efficient assignment. However, Example 1 also demonstrates that TTC does not

eliminate justified envy. Therefore, DA is typically interpreted as the fair assign-

ment mechanism, and TTC it typically interpreted as the efficient mechanism.

Consider the following classic example from Roth (1982) and applied to the

school assignment problem by Abdulkadiroglu and Sonmez (2003).

Example 1. There are three students i, j, k, and three schools a, b, c, each of

which has a capacity of one. Consider the following preferences and priorities

where P denotes the preferences of students and � the priorities of schools.

Pi Pj Pk �a �b �c

b a a i j j

a b b k i i

c c c j k k

There is only one assignment that eliminates justified envy:i j k

a b c
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We label this assignment µ. However, µ is Pareto-dominated by the following

assignment which we label λ: i j k

b a c


Under assignment λ, k has justified envy of j: aPkc and k �a j.

It seems clear that the highest ranked student at school s should either be assigned

to s or a school she prefers to s.7 If we agree to never violate these priorities, then

in Example 1, k’s claim to a is substantially weakened. Since i has the highest

priority at a and the only school she prefers to a is b, i must be assigned to a or

b. Similarly, j must be assigned to a or b. Therefore, k is never assigned to a

so long as we honor the top priorities. The only way we can honor k’s objection

and to honor top priorities, is to assign i to a. Note that k’s objection is based on

her priority at a, but this results in an agent with even higher priority at a being

harmed.

This motivates a new fairness concept we call justness. Intuitively, when a student

raises an objection based on justified envy, we will allow the students with even

higher priority at that object to veto the objection. In particular, suppose i has

justified envy of j at object a. Before enforcing this objection, we first check

whether changing j’s assignment may possibly harm any of the students ranked

even higher than i at a. If so, we “veto” the objection.8

Definition 1. Given an assignment mechanism φ, an agent i depends on agent j

at preference profile R if there exist a R′j such that φ(R′j, R−j)(j) = φ(R)(i).

7Abdulkadiroglu and Che (2010) introduce this concept and call it respecting top priorities.
8This condition is most natural when we consider strategyproof mechanisms and when objects

have a capacity for one student.
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Suppose j is assigned to school a and some student has justified envy of j. Let i

be the highest ranked student with justified envy of j. Note that all of the students

ranked higher than i at a strictly prefer their assignment to a. If none of these

students depend on j, then they should have no objection to i being assigned to

a. In this case, we consider it unjust if j is assigned to a instead of i. However,

if one of these students depends on j, then it is not clear that we can change j’s

assignment without harming this student. In this case, we take the conservative

position of not allowing such an objection.

Definition 2. Given a preference profile R, the assignment µ = φ(R) is unjust if

there exists a student i and school a such that

1. aPiµ(i)

2. i �a j where µ(j) = a

3. For all students k such that k �a i, k does not depend on j.

φ is just if it never makes an unjust assignment.

Since an instance of justified envy is necessary for an assignment to be unjust,

clearly if an assignment has no justifiable envy, then it is just. Therefore, eliminat-

ing justified envy is a strictly stronger fairness concept than justness. In particular,

since DA eliminates justified envy, it is just.

For intuition, consider whether or not TTC makes a just assignment in Example 1.

Student k has justified envy of j at school a. However, if j ranks b first, then TTC

will assign j to b. Therefore, i depends on j. Therefore, this instance of justified

envy does not violate justness, and indeed, TTC makes a just assignment.
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An assignment respects top priorities if the highest ranked student at each school

sweakly prefers her assignment to s. Note that if an agent has the highest priority,

then trivially there cannot be an agent with higher priority and so our additional

restriction has no bite. Therefore, a just assignment respects top priorities.

The Boston mechanism is a common mechanism observed in practice.9 In this

mechanism, in the first round, each school only considers the students that have

listed it as their first choice. Among these students, a school accepts the student

with the highest priority and rejects all others.10 In round k, each remaining stu-

dent applies to the kth school on her list. Each school with available capacity

accepts the highest ranked student that applies. All other students are rejected.

The algorithm terminates when all students have been assigned. Consider the

case where i has highest priority at school a, j has highest priority at b, and k

has highest priority at c. Suppose i ranks b first, a second and c third; j ranks b

first; and k ranks a first. In this case, i is rejected by b in the first round. Since a

accepts k in the first round, i is rejected by a in the second round. And ultimately

i is assigned to c in the third round. Therefore, the Boston mechanism does not

respect top priorities as i has highest priority at a yet is assigned to a school she

finds inferior to a. Therefore, the Boston Mechanism is not just.

A significant practical objection to eliminating justified envy is that it is impossi-

ble for a mechanism to be Pareto efficient and eliminate justified envy. The next

Lemma demonstrate that this is not the case with justness. TTC is strategyproof,

Pareto efficient, and just.

Lemma 1. Top Trading Cycles is just.

9See Abdulkadiroglu and Sonmez (2003) for a detailed discussion.
10In general, if a school has capacity q, then it accepts up to the q highest ranked students.
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Figure 1: Each agent in a trading cycle is dependent on the other agents in the

cycle. For example, here Student 1 will receive Student 2’s assignment if she

points at it.

Student 1
A

Student 2

B
Student 3

C

Student 1
A

Student 2

B
Student 3

C

Proof. Figure 1 gives the intuition. In any trading cycle, all of the students in

the cycle depend on each of the other students in the cycle. So if student i has

justified envy of student j, then j was assigned in an earlier round than i. In that

cycle, the object i envies is pointing to a student who is higher ranked than i and

who depends on j. Therefore, this is not a violation of justness. More formally,

consider any priorities and capacities of objects. Let R be any preference profile

of the students. Suppose for some student i and school a that a Pi TTC(R)(i)

and that i �a j where TTC(R)(j) = a. Let {a, j1, a2, j2, . . . , an, jn = j} be

the cycle in which TTC assigned a to j. Since i prefers a to her assignment, i

is not assigned until after a has been assigned to capacity. In particular, j1 �a i.

However, if j changed its preferences to R′j where she ranks a2 first, then she will

be assigned a2. Therefore, j1 depends on j.

The following example is included both to provide intuition on justness and to
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demonstrate that strategyproofness is independent from efficiency and justness.

Example 2. Consider the following variation of TTC. For simplicity, we assume

that the number of students equals the number of schools although the algorithm

can be easily generalized. We will allow a school to deem a student unaccept-

able. Initially all students are acceptable at all schools. Each student points to

her favorite school. Each school points to the highest-ranked acceptable student.

Suppose a student i is the highest ranked student at more than one school. Let

a be i’s favorite school among those at which she is ranked first. We keep i’s

priority at a the same; however, for any other school b at which i has the highest

priority, b now deems i unacceptable and points to what student is now its highest-

ranked acceptable student. We iterate this process until no student has more than

one school pointing at her.11 As in TTC, there must exist at least one cycle. We

process all cycles and then repeat until all students have been assigned. Note that

i will not have justified envy at any school b that has declared i unacceptable. For

b to declare i unacceptable, a school a that i prefers to b must have been pointing

at i. Therefore, i is assigned to a or a school i prefers to a; therefore, she does

not envy any student assigned to b. This algorithm is efficient since in each step

the students who are assigned receive their favorite school with available capacity.

This mechanism is also just for the same reason that TTC is just. The students in a

cycle all depend on each other, and therefore if i has justified envy of j at object a,

then a student ranked higher than i at a is dependent on j (in particular, the student

that a is pointing to in the cycle involving j). Note that although this algorithm

is efficient and just, it is not strategyproof. For example, consider the following

11Since we have assumed the number of schools equals the number of students, it is never the

case that a school finds all remaining students unacceptable. However, if there are more schools

then students (or in the general case when the total school capacity is greater than the number of

students), such a school would be removed at that point.
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agents, objects, and preferences. There are three students i, j, k, and three schools

a, b, c, each of which has a capacity of one. The priorities and preferences are as

follows:
Ri Rj Rk �a �b �c

b a a i j j

a c b k k i

c b c j i k

Initially both b and c rank j first. Since j prefers, c to b, c points to j and we

change b’s priorities so that j is unacceptable. Now a points to i, b points to k,

and c points to j. There is one cycle: {i, b, k, a}. Therefore, j is assigned to c.

However, if j submits preferences R′j : a, b, c, then j will be assigned to a.

A natural question to ask is whether or not it is possible to allow more objections

than justness and still be strategyproof and Pareto efficient. We first demonstrate

that when the capacity of each object is at most one, then it is not necessary

to search for a stronger condition. TTC is the only strategyproof and efficient

mechanism that is just, so any stronger condition could only be satisfied by TTC.

Theorem 1. Suppose each object’s capacity equals one. Then the only mechanism

that is strategyproof, efficient, and just is Top Trading Cycles.

Proof. It is well known that TTC is strategyproof and efficient. Lemma 1 estab-

lishes that TTC is just. Suppose for contradiction that there is a mechanism φ that

is strategyproof, efficient, but there exists a R ∈ R, �∈ C, and i ∈ I such that

φ(R,�)(i) 6= TTC(R,�)(i). We fix � for the remainder of the proof.

For clarity, we consider an implementation of TTC where we process cycles one

at a time. TTC is independent of the order in which cycles are processed. For

each R such that TTC(R) 6= φ(R), we choose the order of cycles so that we
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assign an agent differently under TTC and φ as soon as possible. Specifically,

define f(R) to be the minimum number of cycles that must be processed before

we assign an agent who receives a different assignment under TTC and φ. Among

the preference profiles where TTC and φ are not equal, choose R such that f(R)

is minimal.

Let C = {o1, i1, o2, i2, . . . , oK , iK} be the earliest possible cycle where an agent

is assigned differently under TTC and φ, and without loss of generality, assume

φ(R)(iK) 6= TTC(R)(iK). Let I∗ be the agents assigned in earlier cycles of TTC

where I∗ = ∅ if C is the first cycle. For ij ∈ C define R1
j := oj+1, oj, ∅ and define

R2
j := oj, ∅.

Claim 1: For any ij ∈ C, φ(R2
j , RI∗ , R

′
−j)(ij) = oj where R′−j are any prefer-

ences of the agents I \ (I∗ ∪ {j}).

Suppose for contradiction that φ(R2
j , RI∗ , R

′
−j)(ij) 6= oj for some ij ∈ C. Since

ij is not assigned to oj , ij must be unassigned as otherwise leaving ij unassigned

would be a Pareto improvement. Moreover, if no student is assigned to oj , then

changing ij’s assignment to oj would be a Pareto improvement. Therefore, there

must be some student k such that φ(R2
j , RI∗ , R

′
−j)(k) = oj . First, we show that

k 6∈ I∗. Since TTC(R2
j , RI∗ , R

′
−j)(i) 6= oj for any i ∈ I∗ and each i ∈ I∗ is

processed in an earlier cycle than C, if k ∈ I∗, then k would be an agent assigned

differently under TTC and φ in an earlier cycle than C. This would contradict

the minimality of f(R). Therefore, ij has justified envy of k since ij has the

highest priority at oj of any student not in I∗ and therefore higher priority at oj

than k. Second, we show that no i ∈ I∗ is dependent on k. In fact, we show

something stronger: for every i ∈ I∗ and every l ∈ I , if i is dependent on l, then

l ∈ I∗. In words, no student in I∗ is dependent on a student not in I∗. Consider
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any i ∈ I∗. i’s assignment in TTC does not depend on the report of any student

assigned in a later cycle. Therefore, if one of these students changed her report

and it changed i’s assignment under φ, then TTC and φ would assign i to different

schools. Since each i ∈ I∗ is assigned in an earlier cycle than C, this would again

contradict the minimality of f(R). Therefore, i is not dependent on this student.

In particular, no student in I∗ is dependent on k. Since ij has justified envy of k

and no agent ranked higher at oj than ij is dependent on k, assigning k to oj is

unjust, a contradiction.

Claim 1 implies that for any ij ∈ C, anyR′ij , and anyR′−j , φ(R′ij , RI∗ , R
′
−j)(ij) R

′
ij
oj .

Otherwise, ij could strictly improve her assignment by reporting R2
j which would

violate strategyproofness. Therefore, for each ij ∈ C and any preferences R′−j ,

φ(R1
ij
, RI∗ , R

′
−j)(ij) ∈ {oj+1, oj} . (1)

Since φ(R)(iK) 6= o1, it cannot be that φ(R1
iK
, R−iK )(iK) = o1 or else iK could

profitably misreport her preferences. Therefore, by Eq. (1), φ(R1
iK
, R−iK )(iK) =

oK . As oK may only be assigned once, φ(R1
iK
, R−iK )(iK−1) 6= oK . Since φ(R1

iK
, R−iK )(iK−1) 6=

oK , strategyproofness implies φ(R1
iK−1

, R1
iK
, R−{iK−1,iK})(iK−1) 6= oK or else

iK−1 could profitably misreport her preferences when her true preferences are

RiK−1
and the other agents report preferences (R1

iK
, R−{iK−1,iK}). Therefore, by

Eq. (1) φ(R1
iK−1

, R1
iK
, R−{iK−1,iK})(iK−1) = oK−1. Recursively applying this

logic, we find that φ(R1
C , R−C)(i1) = o1. Eq. (1) and the fact that each object

may be assigned only once imply that for every ij ∈ C,

φ(R1
C , R−C)(ij) = oj (2)

However, Eq (2) leads to a contradiction. Since φ(R1
C , R−C)(ij) = oj for every
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ij ∈ C, then φ is inefficient as we can reassign each ij ∈ C to oj+1, leave all other

assignments unchanged, and Pareto improve φ(R1). Therefore, φ(R,�)(i) =

TTC(R,�)(i) for every i ∈ I1(R,�).

DA is strategyproof and just but not efficient. Example 2 provides an algorithm

that is efficient and just but is not strategyproof. A serial dictatorship is strat-

egyproof and efficient but is not just. Therefore, the criteria in Theorem 1 are

independent.

When schools have a capacity greater than one, then TTC is no longer the unique

strategyproof, efficient, and just mechanism. For example, consider Clinch and

Trade which was introduced in Morrill (2014b). Clinch and Trade is a variation

on TTC. Each round consists of two parts. In the clinching phase, if the student has

one of the qa highest priorities at her most preferred object a, then we assign the

agent and remove her. We iterate the clinching process until no student is able to

clinch her assignment.12 Next, in the pointing phase each agent points to her most

preferred object with available capacity. As in TTC, we assign all cycles, remove

agents, and adjust the capacities of objects accordingly. The algorithm terminates

when all students have been assigned or no school has available capacity. The

next lemma demonstrates that Clinch and Trade is also just.

Lemma 2. Clinch and Trade is just.

Proof. Consider any priorities and capacities of objects. Let R be any preference

12In the first round, all students are involved in the clinching phase. However, a student only

participates in the clinching phase of round k > 1 if the school she was pointing to in round k− 1

no longer has available capacity. This restriction is necessary to preserve strategyproofness.
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profile of the students. Let µ to be the assignment made by Clinch and Trade.

Suppose aPiµ(i) for some student i and school a, and let j be a student such that

µ(j) = a. If j was assigned via clinching, then j must have higher priority at a

then i. Otherwise, let {a, j1, a2, j2, . . . , an, jn = j} be the cycle in which Clinch

and Trade assigned a to j. Since i prefers a to her assignment, i is not assigned

until after a has been assigned to capacity. In particular, j1 �a i. However, if j

changed its preferences to R′j where she switches the ordering of a and a2, then

she will be assigned a2. Therefore, j1 is dependent on j. Therefore, this instance

of justified envy does not violate justness.

An important point to note is that for general capacities, we can no longer consider

TTC to be “maximally” fair. It is an open question which assignment procedure

has a minimal number of instances of justified envy when the object capacities are

greater than one. However, Morrill (2014a) uses simulations to demonstrate that

Clinch and Trade and a TTC variant called Prioritized Trading Cycles perform

better than TTC on average.

TTC is an iterative algorithm. We assign the seats at schools one at a time, and

whenever the capacity of a school is greater than one, we are always able to assign

a set of students and reduce the size of the problem. This is a rather appealing fea-

ture of an algorithm. When a problem is complex, we are able to identify a group

whose assignments have already been determined, assign them, and consider the

remaining students separately. We are therefore always able to reduce a large

problem to a simpler problem. This feature is enough to characterize TTC for ar-

bitrary capacities. It is the only strategyproof, Pareto efficient, and just algorithm

that is reducible in this way.

For notational convenience, we fix the set of objects O and the priorities of the
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objects � over the agents I . It is understood that when we consider a subgroup

of students J ⊂ I , that object a’s priorities are the induced priorities �J
a where

j1 �J
a j2 if and only if j1 �a j2 for any j1, j2 ∈ J . For the remainder of the paper,

we denote an assignment problem (I, O,R,�, q) by (I, R, q). Given two sets of

students J,K ⊂ I such that J ∩K = ∅, and given two assignments µ : J → O

and µ′ : K → O, we define the assignment λ = µ ∧ µ′ : J ∪ K → O by

λ(j) = µ(j) for each j ∈ J and λ(k) = µ′(k) for each k ∈ K.

We want to be able to identify a group of students that we can assign and remove

from consideration in order that we can simplify the problem. A key point is that

the first group’s assignments must not depend on the preferences of the remaining

students.

Definition 3. Given a mechanism φ, (I∗, RI∗ , q
∗), is a dominant subproblem for

an assignment problem (I, R, q) if

φ(I, RI∗ , R
′
I\I∗ , q) = φ(I∗, RI∗ , q

∗) ∧ φ(I \ I∗, R′I\I∗ , q − q∗)

where 0 < q∗ < q and R′I\I∗ are any preferences of the students I \ I∗. We call I∗

a dominant subgroup.

Dominant subproblems are not unique to TTC. For example, in DA an agent with

highest priority at her favorite object forms a dominant subgroup. Such an agent’s

assignment is independent of the preferences of any other agent. Similarly, in a

serial dictatorship, the j highest dictators form a dominant subgroup. A key dis-

tinguishing feature of TTC is that we are always able to find a dominant subgroup

whenever the assignment problem is nontrivial.13 We demonstrate that a weak

version of this type of reducibility is enough to characterize TTC.
13Specifically, we consider an assignment problem to be trivial if it is possible to assign every

student to her favorite school. TTC contains a dominant subgroup whenever this is not possible.
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Definition 4. Consider an assignment problem (I, R, q) and any capacity vector

0 < q∗ < q. LetA = {i ∈ I|φ(I, R, q∗)(i) 6= ∅} andUA = {i ∈ I|φ(I, R, q∗)(i) = ∅}
be the set of assigned and unassigned students, respectively. Then q∗ is a domi-

nant subcapacity of (I, R, q) if

φ(I, RA, R
′
UA, q) = φ(I, R, q∗) ∧ φ(UA,R′UA, q − q∗)

for any preferences R′UA of the unassigned agents. We call A the dominant sub-

group associated with q∗.

Definition 5. A mechanism φ is reducible if all assignment problems Γ = (I, R, q)

contain a dominant subcapacity whenever some school has a capacity greater than

one.

Efficiency imposes a constraint on dominant subcapacities.

Lemma 3. Suppose φ is efficient. Given an assignment problem (I, R, q), let q∗

be a dominant subcapacity, and let A = {i ∈ I|φ(I, R, q∗)(i) 6= ∅} be the associ-

ated dominant subgroup. Then for every i ∈ A, if aPiφ(I, R, q∗)(i) then q∗a = qa.

Proof. Let UA = I \ A. Suppose for contradiction that there is an i ∈ A,

φ(I, R, q∗)(i) = b, aPib, and q∗a < qa. For each j ∈ UA, letR′j be any preferences

such that bP ′ja. Since q∗ is a dominant subcapacity, φ(RA, R
′
UA, q)(i) = b. Since

q∗a < qa, either a is not assigned to its full capacity or else there is a j ∈ UA

such that φ(RA, R
′
UA, q)(j) = a. In the first case, φ(RA, R

′
UA, q) can be Pareto

improved by assigning i to a. In the second case, φ(RA, R
′
UA, q) can be Pareto

improved by assigning i to a and j to b. Either contradicts the efficiency of φ.

Theorem 2. TTC is the only assignment mechanism that is strategyproof, effi-

cient, just, and reducible.
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Proof. Fix an I , R, O, and �. Consider any strategyproof, efficient, just, and

reducible mechanism φ. We prove φ = TTC by induction. Theorem 1 estab-

lishes the base inductive step. Consider a capacity vector q such that there is an

a with qa > 1. Our inductive hypothesis is that for all q′ < q, φ(I, R, q′) =

TTC(I, R, q′). Since φ and qa > 1, (R, q) contains a dominant subcapacity

q∗. Let A = {i ∈ I|φ(I, R, q∗)(i) 6= ∅} and UA = {i ∈ I|φ(I, R, q∗)(i) = ∅}.
Therefore, φ(I, R, q) = φ(I, R, q∗) ∧ φ(UA,RUA, q − q∗). By the inductive hy-

pothesis, φ(I, R, q∗) = TTC(I, R, q∗) and φ(UA,RUA, q−q∗) = TTC(UA,RUA, q−
q∗).

In general, TTC(I, R, q)(i) 6= TTC(I, R, q′)(i). However, we show that for a

dominant subcapacity, the two coincide. For TTC(R, q∗), we process the cy-

cles one at a time. Fix any ordering of the cycles and consider the first cycle

processed, C1 = {o1, i1, o2, i2, . . . , on, in}. The set of agents are identical un-

der TTC(I, R, q∗) and TTC(I, R, q), so each object with available capacity un-

der q∗ points to the same agent under q∗ or q. The agents potentially have a

larger set of objects to point at under q than q∗. Therefore, if any agent points

to school a under q and b under q∗, it must be that qa > q∗a and aPib. There-

fore, it must be that each student ik ∈ C points to ok+1 in TTC(R, q); otherwise,

if ik points to a different school a, qa > q∗a and aPiTTC(R, q∗)(i), contradict-

ing Lemma 3. Therefore, C1 is a cycle both in TTC(R, q∗) and TTC(R, q).

After removing it from both, the same logic implies that the second cycle in

TTC(R, q∗) is also a cycle in TTC(R, q), and so on. Every time we process

a cycle in TTC(R, q∗), we can process the same cycle in TTC(R, q). Therefore,

TTC(I, R, q)(i) = TTC(I, R, q∗)(i). Even stronger, when there are no schools

with available capacity in TTC(R, q∗), TTC(UA,RUA, q − q∗) exactly corre-

sponds to the reduced problem in TTC(I, R, q) after removing the same cycles.
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Therefore, φ and TTC make the same assignments.

Clinch and Trade is strategyproof, efficient, and just. Since it does not make the

same assignments as TTC, Theorem 2 implies it is not reducible.14 A serial dicta-

torship is strategyproof, efficient, and reducible; however, it is not just. Example

3 provides a trivial algorithm that is strategyproof, just, and reducible but not effi-

cient. Example 4 provides an algorithm that is efficient, just, and reducible but is

not strategyproof. Therefore, the conditions are independent.

Example 3. Consider the following trivial variation of TTC. We run TTC unless

we start with two agents, {i, j}; two objects, {a, b}; each object has a capacity of

one; and the objects have the following priorities:

�a �b

i j

j i

In this case, we assign i to a and j to b regardless of the preferences they submit.

This is clearly strategyproof as preferences are disregarded. It is just since their is

no justified envy. It is trivially reducible. However, it is not efficient in the case

that i prefers b to a and j prefers a to b.

Example 4. Consider the following variation of TTC. We run TTC unless we start

14Under Clinch and Trade, a top trading cycle no longer forms a dominant subproblem. This

occurs when a student not in the cycle changes her preferences so that she clinches an object, and

her clinch causes one of the agents in the cycle to clinch. It is easy to design an example where

this changes the assignment of one of the other agents in the cycle.
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with the following problem (here each object has a capacity of one).

Ri Rj Rk �a �b �c

b a a i j i

c b b k k i

a c c j i k

In this case, we assign i to c, j to b, k to a, and leave i unassigned. This mechanism

is reducible as reducibility has no bite when objects have a capacity of one (and

otherwise we run TTC which is reducible). The mechanism is efficient, and it is

just since in the only case where we deviate from TTC, we make an assignment

with no justified envy. However, it is not strategyproof. If i reports R′i : b, a, c,

then we run TTC and i is assigned to b instead of c.

4 Conclusion

It is well known that eliminating justified envy is inconsistent with making a

Pareto efficient assignment. This paper introduces an alternative fairness notion,

justness, and demonstrates that it is possible to make just and efficient assignments

with a strategyproof mechanism. In particular, TTC is the unique mechanism that

is strategyproof, efficient, and just.

A reasonable way to define a mechanism Φ as being fairer than a mechanism Ψ

is if the instances of justified envy for Φ are a subset of the instances of justified

envy for Ψ. Our characterization demonstrates that when objects have capacity

of one, there is no strategyproof and efficient mechanism that induces strictly

fewer instances of justified envy than TTC. Under this interpretation, although no

mechanism can be strategyproof, efficient and fair, there is no strategyproof and
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efficient mechanism that is fairer than TTC.
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ABDULKADIROĞLU, A., AND T. SÖNMEZ (1999): “House allocation with exist-

ing tenants,” Journal of Economic Theory, 88(2), 233–260.
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