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Abstract

This paper introduces two new characterizations of the Top Trad-

ing Cycles algorithm. The key to our characterizations is a new con-

dition, independence of irrelevant rankings (IIR). Intuitively, a mech-

anism satisfies IIR if whenever an agent’s ranking at an object is ir-

relevant to her assignment, then it is irrelevant to the assignment

of all agents. We demonstrate that a mechanism is Pareto efficient,

strategy proof, IIR, and satisfies mutual best if and only if it is Top

Trading Cycles. This provides a new insight into what distinguishes

Top Trading Cycles from all other efficient and strategy proof assign-

ment mechanisms. We provide a second characterization in terms of
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weak Maskin monotonicity. A mechanism satisfies Pareto efficiency,

weak Maskin monotonicity, IIR, and mutual best if and only if it is

Top Trading Cycles. This allows us to directly compare Top Trading

Cycles to known characterizations of the Deferred Acceptance algo-

rithm in terms of weak Maskin monotonicity.

Key Words: Top Trading Cycles, School Choice, Assignment.

JEL Classification: C78, D61, D78, I20

1 Introduction

School choice assignment mechanisms have been a recent contribution of

economics to practical market design. In their groundbreaking paper, Ab-

dulkadiroglu and Sonmez (2003) describe the trade-offs between two clas-

sic assignment algorithms: Gale’s Top Trading Cycles algorithm (hereafter,

TTC) and Gale and Shapley’s Deferred Acceptance algorithm (hereafter,

DA). While both mechanisms are strategy proof, TTC is Pareto efficient

but not necessarily stable. Alternatively, DA is stable, but not necessar-

ily efficient. Therefore, while implementing either assignment algorithm is

straightforward, the choice of which algorithm to use is difficult.

A policy maker who advocates TTC should be able to answer the following

two questions: why use TTC instead of using DA, and why use TTC instead

of using an alternative Pareto efficient, strategy proof mechanism?1 While

the answer to either question involves trade-offs, we seek to inform such an

1For example, a serial dictatorship is efficient and strategy proof. In a serial dictatorship

students select in sequence their most preferred school among those that still have available

capacity.
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analysis by providing two new characterizations of TTC. The first charac-

terization distinguishes TTC from all other Pareto efficient, strategy proof

mechanisms. The second allows for a direct comparison between TTC and a

known characterization of DA.

We demonstrate that two characteristics of TTC distinguish it from all other

strategy proof and efficient mechanisms. The first condition, mutual best

(MB), specifies that a mechanism satisfy a minimal level of fairness. A mech-

anism satisfies MB if a student with highest priority at her most preferred

school is always assigned that school. Note that a serial dictatorship does

not satisfy MB. MB is necessary for stability, but it is a far weaker condition.

To complete the characterization, we introduce a new property, independence

of irrelevant rankings. We define a set of agents to be invariant if their

assignments do not depend on the preferences or rankings of others. This

is motivated by MB. If a mechanism satisfies MB, then an agent is always

assigned her most preferred object if she has highest priority for the object

regardless of her ranking at any other object or the preferences of the other

agents. For an invariant set of agents, their rankings at outside objects

are irrelevant to their assignment. Independence of irrelevant rankings (IIR)

specifies that the assignment of every agent is independent of these irrelevant

rankings.

IIR is a counterpart to nonbossiness. A mechanism is nonbossy if any change

in an agent’s preferences that does not affect her assignment does not af-

fect the assignment of other agents. An analogous condition for priorities

might be that if a change in an agent’s priority for an object does not af-

fect her assignment, then it does not affect the assignment of other agents.
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Such a condition would not be satisfied by either TTC or DA.2 However,

IIR is a significantly weaker condition precisely because invariance is such a

strong condition. IIR only imposes a restriction on invariant sets. Indeed,

we demonstrate that TTC, DA, the Boston mechanism, and random serial

dictatorships all satisfy IIR.

Our main characterization distinguishes TTC from all other strategy proof

and efficient mechanisms. Specifically, we demonstrate that TTC is the

unique mechanism that is strategy proof, efficient, IIR, and satisfies MB. IIR

and MB are all intuitive and desirable attributes of a mechanism. Therefore,

this characterization provides a positive answer to the motivating question.

We introduce a second characterization in order to compare TTC to DA. We

prove that a mechanism satisfies MB, weak Maskin monotonicity, IIR, and

efficiency if and only if it is TTC. R′ is a monotonic transformation of R at

µ if for all agents, any object that is preferred to µ under R′ is preferred to

µ under R. An assignment mechanism φ satisfies weak Maskin monotonic-

ity if every agent weakly prefers φ(R′) to φ(R) whenever R′ is a monotonic

transformation of R at φ(R). This characterization was motivated by Ko-

jima and Manea (2010) who provide a characterization of DA in terms of

non-wastefulness,3 weak Maskin monotonicity, and population monotonic-

ity.4 Indeed, the advantage of our characterization is we may make a direct

2This is the motivation for the efficiency-adjusted deferred acceptance algorithm in-

troduced in Kesten (2010). In this modification of deferred acceptance, a student may

consent to waive her priority at an object if this priority does not affect her assignment

but results in a Pareto inefficient assignment for the other agents.
3An assignment rule is non-wasteful if for every preference profile, any object that an

agent prefers to her assignment has been allocated up to its quota to other agents.
4Intuitively, an allocation rule is population monotonic if agents are weakly better off
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comparison between TTC and DA. Morrill (2011) demonstrates that a mech-

anism satisfies MB, non-wastefulness, weak Maskin monotonicity, and popu-

lation monotonicity if and only if it is DA. Non-wastefulness is only necessary

to rule out degenerate assignment mechanisms and is satisfied by TTC. Sim-

ilarly, DA satisfies IIR. Therefore, one way of distinguishing between TTC

and DA is that of efficiency versus population monotonicity.

Throughout the paper, we assume that objects may be assigned to at most

one agent. We demonstrate in Section 4 that our characterizations do not

hold when objects may be assigned to more than one agent. In particular,

when objects may have capacities greater than one, TTC violates IIR. This is

surprising as DA, the Boston mechanism, and random serial dictatorships all

continue to satisfy IIR for arbitrary capacities. It remains an open question

how to characterize TTC when objects may be assigned to more than one

agent.

1.1 Relation to the Literature

This paper is closely related to Abdulkadiroglu and Che (2010), hereafter

A&C. Their paper is the first to ask what distinguishes top trading cycles

from all other strategy proof and efficient mechanisms. They provide an

answer by introducing the concept of recursively respecting top priorities.

They define an assignment to respect top priorities if for every student i, the

student that has top priority at i’s assignment prefers her own assignment

to i’s assignment. If an assignment respects top priorities, then consider any

when fewer other agents participate in the assignment. A formal definition is provided on

Page 21.
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student i1 and label i′1s assignment s1. Let i2 be the student with highest

priority at s1. Since the assignment respects top priorities, i2’s assignment

s2 must be preferred by i2 to s1. Similarly, label the student with highest

priority at s2 i3, and so on. Since there are only a finite number of students,

eventually we must repeat a student. A&C call this a top priority group.

They define a matching to recursively respect top priorities if it respects

top priorities and every time a top priority group and their assignments

are removed, the matching on the sub-population continues to respect top

priorities. A&C demonstrate that the unique mechanism that is strategy

proof, efficient, and recursively respects top priorities is TTC.

Our paper is intended to complement A&C’s characterization. As A&C

point out, a full characterization of TTC is important for a school board

deciding how to best implement school choice. Our characterizations give

alternative ways of explaining TTC.

Mutual best is logically independent of both respecting top priorities and

recursively respecting top priorities. Notice that the null assignment respects

top priorities, but it is straightforward to find a preference profile where the

null assignment violates MB. However, for efficient mechanisms, MB is a

strictly weaker concept than respecting top priorities. Specifically, if φ is non-

wasteful and respects top priorities, then φ satisfies MB.5 The example below

demonstrates that MB does not imply respecting top priorities. Therefore,

5The argument is as follows. Consider a non-wasteful mechanism φ that respects top

priorities, and let i ∈ I, a ∈ O, R ∈ R, and �∈ C be such that aPib for all b ∈ O \ {a}
and i �a j for all j ∈ I \ {i}. Then φ(a) 6= ∅ or else φ would be wasteful. If φ(i) 6= a

and φ(a) 6= ∅, then for some j ∈ I \ {i}, φ(j) = a. Therefore, i has top priority at j’s

assignment, but i prefers j’s assignment to her own. This violates respecting top priorities.

Therefore, φ(i) = a and φ satisfies MB.
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MB is a strictly weaker assumption than respecting top priorities for non-

wasteful assignment mechanisms.

Example 1. Consider the following mechanism φ. When there are three

students, i, j, and k, three objects, a, b, and c, and the agents and objects

have the following preferences and priorities, then φ assign i, j, and k to c,

a, and b, respectively. For any other assignment problem, φ runs TTC.

Ri Rj Rk �a �b �c
b a a i j j

a b b j i i

c c c k k k

φ satisfies MB since in the special case, no agent has highest priority at her

top choice and TTC satisfies mutual best. However, φ does not respect top

priorities as i has top priority at a and i prefers a to c. Of course, φ also

does not recursively respect top priorities.

Our paper is also closely related to Kojima and Manea (2010) and Morrill

(2011). Kojima and Manea (2010) provide two characterizations of when an

allocation rule corresponds to the deferred acceptance algorithm for some

substitutable priorities of the objects being assigned. Morrill (2011) charac-

terizes when a mechanism is equivalent to the deferred acceptance algorithm

for all substitutable priorities. Our first characterization was deliberately

chosen to be in terms of weak Maskin monotonicity so that we could directly

compare top trading cycles to this characterization of the deferred acceptance

algorithm. Ehlers and Klaus (2010) provide a related characterization of DA

when priority rules are limited to be responsive.

There are a number of other papers characterizing assignment mechanisms.
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Papai (2000) characterizes hierarchical exchange rules, which top trading

cycles is a particular instance of, in terms of Pareto efficiency, group strat-

egy proofness, and reallocation proofness. Pycia and Unver (2010) introduce

and characterize a generalization of top trading cycles they call trading cycles

with brokers and owners. There have been several recent papers characteriz-

ing assignment mechanisms other than top trading cycles. Kojima and Unver

(2010) provide a characterization of the Boston assignment mechanism.

2 Model

We consider a finite set of agents I = {1, . . . , n} and a finite set of objects

O = {a, b, c, . . .} . We assume that each object may be assigned to at most one

agent. We demonstrate in Section 4 that our characterizations do not extend

when objects may be assigned to more than one agent. Each agent i ∈ I

has a complete, irreflexive, and transitive preference relation Pi over A∪{∅}.
∅ represents an agent being unassigned, and q∅ = ∞. aPib indicates that i

strictly prefers object a to b. Given Pi, we define the symmetric extension

Ri by aRib if and only if aPib or a = b.

Each object a ∈ O has a complete, irreflexive, and transitive priority rule �a
over I. In particular, i �a j is interpreted as agent i has a higher priority for

object a than agent j. We define � analogously to our definition of R.

We let P = (Pi)i∈I , �= (�a)a∈O, P−I′ = (Pi)i∈I\I′ , and �−O′= (�a)a∈O\O′ .
Throughout, I and O are fixed, and we define the assignment problem by

(P,�).
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An allocation is a function µ : I → O ∪ {∅} such that for each a ∈ O,

| {i ∈ I|µ(i) = a} | ≤ 1.6 In a slight abuse of notation, for a set of agents

I ′ ⊂ I, we define µ(I ′) = {a ∈ O|∃i ∈ I ′ such that µ(i) = a}, and set µ(a) =

{i ∈ I|µ(i) = a}. Given allocations µ and µ′, we say µRµ′ if µ(i)Riµ
′(i) for

every i ∈ I.

An allocation is Pareto efficient if there does not exist another allocation

ν such that ν(i)Riµ(i) for every i ∈ I and ν(i)Piµ(i) for some i.

We denote by R, C, and A the sets of all possible preference relationships,

priority rules, and assignments, respectively. An allocation mechanism is

a function φ : R× C → A. A mechanism φ is strategy proof if reporting

true preferences is each agent’s dominant strategy. That is:

φ(P,�)(i)Riφ(P ′i , P−i,�)(i)

for all P , �, i ∈ I, and P ′i .

Abdulkadiroglu and Sonmez (2003) give detailed descriptions of TTC, DA,

and the Boston mechanism. Although we characterize TTC when schools

have a capacity for only one student, we describe the general algorithms

here. Given strict preferences of students and strict priority lists for schools,

TTC assigns students to schools according to the following algorithm. In each

round, each student points to her most preferred remaining school, and each

school with available capacity points to the remaining student with highest

priority. As there are a finite number of students, there must exist a cycle

{o1, i1, . . . , oK , iK} such that each oj and ij points to ij and oj+1, respectively

(with oK+1 ≡ o1). For each cycle, student ij is assigned to object oj+1, ij

6In the general case, for each a ∈ O, | {i ∈ I|µ(i) = a} | ≤ qa where qa is the capacity

of a.
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is removed, and the capacity of oj+1 is reduced by one. When a school has

no remaining capacity, it is removed. For any R ∈ R, �∈ C, the mechanism

TTC(R,�) outputs the assignment made by TTC.

The student proposing version of DA is defined as follows. In the first round,

each student proposes to her most preferred school. Each school tentatively

accepts students up to its capacity and rejects the lowest priority students

beyond its capacity. In every subsequent round, each student rejected in the

previous round proposes to her most preferred school that has not already

rejected her. Each school tentatively accepts the highest priority students up

to its capacity and rejects all others. The algorithm terminates when there

are no new proposals and tentative assignments are made final. Roth and

Sotomayor (1990) is an excellent resource for the properties of DA.

A third assignment mechanism we consider is the Boston mechanism. In

the first round of the Boston mechanism, each student applies to her high-

est ranked school, and each school accepts up to its capacity the students

with highest priority among those that have applied. Each student who was

accepted and those schools that are at capacity are removed. In the second

round, each remaining student applies to her most preferred school among

those that have available capacity. Each school accepts up to its capacity

the highest priority students among those that applied. Again, the accepted

students and the schools that are at capacity are removed. The process

continues until all students are assigned.
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3 Alternative Characterizations of Top Trad-

ing Cycles

In this section we provide several characterizations of TTC when objects may

be assigned to at most one agent. Our two main characterizations are in

terms of strategy proofness and weak Maskin monotonicity. We also provide

a characterization in terms of Maskin monotonicity. In the Appendix, we

provide examples that demonstrate the independence of the conditions used

in the characterizations.

3.1 Strategy proofness

Our first characterization of TTC is in terms of strategy proofness and ef-

ficiency. This provides a second answer to the following question posed by

A&C: what distinguishes TTC from all other strategy proof and efficient

mechanisms? TTC is the only efficient and strategy proof mechanism that

satisfies mutual best and independence of irrelevant rankings. Perhaps what

is most surprising about our result is that TTC is characterized without any

recursive properties.

Mutual best is a necessary condition for a mechanism to be stable; however, it

is a far weaker condition. Stability is typically interpreted as a fairness condi-

tion for an assignment mechanism. We interpret mutual best as a mechanism

satisfying a minimal level of fairness.

Definition 1. A mechanism φ satisfies mutual best (MB) if for every i ∈ I
and a ∈ O such that
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• aPib for every b ∈ O \ {a}

• i �a j for every j ∈ I \ {i}

then φ(R,�)(i) = a.

This paper introduces two new properties: invariance and independence of

irrelevant rankings. Intuitively, a set of agents is invariant if their assignment

does not depend on the preferences or rankings of others. For an invariant

set of agents, their rankings at objects not assigned to members of the set are

irrelevant to their assignment. Independence of irrelevant rankings specifies

that the assignment of any agent is independent of these irrelevant rankings.

Below, we formalize the intuitive notion of adjusting the rank of an agent at

a given object.

Definition 2. Given I ′ ⊂ I and O′ ⊂ O, �O′ is an I ′-ranking adjustment

of �′O′ if for every k, l ∈ I \ I ′ and every a ∈ O′

k �a l⇔ k �′a l.

In words, a ranking adjustment changes the priorities of a set of agents at an

object but leaves the relative rankings of the other agents unchanged. Note

that being a ranking adjustment is a reciprocal relationship.

Definition 3. Given an assignment φ(R,�) = µ, a set I ′ ⊂ I is φ(R,�)-

invariant if for every I ′-ranking adjustment �′O\µ(I′) of �O\µ(I′) and every

R′I\I′ :

φ(R,�)(i) = φ(RI′ , R
′
I\I′ ,�µ(I′),�′O\µ(I′))(i), for all i ∈ I ′.
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Although invariance has a technical definition, it is an intuitive concept. A

set of agents is invariant if its members assignments do not depend on their

ranks at outside objects or the preferences of agents not in the set. This is

motivated by MB. For a mechanism that satisfies MB, an agent with highest

priority at her most preferred object is an invariant set. She is always assigned

that object regardless of her priority at any other object or the preferences

of any other agent.

Invariance is deliberately defined to be a very strong condition. However, for

any φ(R,�) there always exists an invariant set as I is trivially invariant.

An invariant set’s priorities at other objects are irrelevant to the agents in

the set. Independence of irrelevant rankings specifies that these priorities are

irrelevant to all agents.

Definition 4. A mechanism φ is independent of irrelevant rankings

(IIR) if for every R ∈ R, C ∈ C, and every φ(R,�)-invariant I ′ ⊂ I, then

for every I ′-ranking adjustment �′O\µ(I′):

φ(R,�)(i) = φ(R,�µ(I′),�′O\µ(I′))(i), for all i ∈ I

where µ = φ(R,�).

By definition, an I ′-ranking adjustment does not affect the assignment of any

member of I ′ when I ′ is an invariant set. IIR specifies that this adjustment

which is irrelevant to I ′ is irrelevant to the other agents as well. This is a

desirable property in terms of fairness.

Invariance is a very strong condition on a set. It is precisely the strength of

invariance that makes IIR a mild assumption. As the next lemma demon-

strates, the standard assignment algorithms all satisfy IIR.
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Lemma 1. Top trading cycles satisfies IIR when objects may be assigned

to at most one agent. The deferred acceptance algorithm, the Boston mech-

anism, and a random serial dictatorship all satisfy IIR regardless of the ca-

pacities of the objects being assigned.

The proof is in the appendix. The basic intuition is that invariance is such a

strong condition that it is satisfied only by very specialized sets. For example,

cycles in the first round of TTC are invariant as they are independent of the

other agents’ preferences or the rankings of the other objects. Similarly,

cycles from the first round of TTC plus any cycles from the second round

form an invariant set. We show that a chain of cycles defined by TTC are

the only invariant sets for TTC. By construction, these agents’ priorities at

other objects are irrelevant to the assignment made by TTC.

For an example of a mechanism that violates IIR, consider the following

assignment rule. Fix an agent i1. i1 is the dictator and may choose any

object she wishes. Fix two agents {i2, i3} ⊂ I \ {i1}. If i1 has highest

priority at every object other than her top choice, then i2 is the next dictator.

Otherwise, i3 is the next dictator. The remaining dictators can be chosen

arbitrarily. The set {i1} is φ(R,�)-invariant for any R and � as i1 is always

assigned her top choice. However, this mechanism violates IIR as i1’s ranking

at the other objects determines which agent is the next dictator. Lemma 1

demonstrates that a random serial dictatorship satisfies IIR.

Lemma 2 provides the base inductive step for the proof of the strategy proof

characterization. However, it is also of independent interest.

Lemma 2. Let φ be any mechanism that is strategy proof, efficient, and

satisfies mutual best. Let I1(R,�) be the agents assigned in the first round
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of TTC(R,�).7 Then:

1. φ(R,�)(i) = TTC(R,�)(i) for every i ∈ I1(R,�).

2. I1(R,�) is φ(R,�)-invariant.

Proof. Suppose for contradiction there exists a R ∈ R, �∈ C, and i ∈ I1(R,�
) such that φ(R,�)(i) 6= TTC(R,�)(i). For notational convenience, we will

fix � for the remainder of the proof. Let C = {o1, i1, o2, i2, . . . , oK , iK} be i’s

cycle in the first round of TTC(R) where ij has highest priority at oj and

oj+1 is ij’s most preferred object (where it is understood that oK+1 refers to

o1). Without loss of generality, let i = iK .

For ij ∈ C define R1
ij

:= oj+1, oj, ∅ and define R2
ij

:= oj, ∅. Note that for

any ij ∈ C and any preferences R′−ij of the other agents, MB implies that

φ(R2
ij
, R′−ij )(ij) = oj as ij has highest priority at oj. Therefore, for any

R′ ∈ R and any ij ∈ C, φ(R′)(ij)R
′
ij
oj or else ij could strictly improve her

assignment by reporting R2
ij

which would violate strategy proofness. There-

fore, for each ij ∈ C and any preferences R′−ij ,

φ(R1
ij
, R′−ij )(ij) ∈ {oj+1, oj} . (1)

Since φ(R)(iK) 6= o1, it cannot be that φ(R1
iK
, R−iK )(iK) = o1 or else iK could

profitably misreport her preferences. Therefore, by Eq. (1), φ(R1
iK
, R−iK )(iK) =

oK . As oK may only be assigned once, Eq. (1) implies that φ(R1
iK
, R−iK )(iK−1) =

oK−1. Therefore, φ(R1
iK−1

, R1
iK
, R−{iK−1,iK})(iK−1) = oK−1 or else iK−1 could

7We have defined TTC to assign all cycles that are present. However, Lemma 2 holds

if we assign the cycles one at a time or if we assign any subset of the cycles in the first

round of TTC.

15



profitably misreport her preferences. Recursively applying this logic, we find

that φ(R1
C , R−C)(i1) = o1. Eq. (1) and the fact that each object may be

assigned only once imply that for every ij ∈ C,

φ(R1
C , R−C)(ij) = oj (2)

However, Eq (2) leads to a contradiction. Since φ(R1
C , R−C)(ij) = oj for

every ij ∈ C, then φ is inefficient as we can reassign each ij ∈ C to oj+1,

leave all other assignments unchanged, and Pareto improve φ(R1). Therefore,

φ(R,�)(i) = TTC(R,�)(i) for every i ∈ I1(R,�).

In the above argument, the preferences of agents in I \ I1 and the priorities

of objects in O \O1 are irrelevant. Therefore, I1 is φ(R,�)-invariant.

Lemma 2 tells us that if we want a mechanism to be strategy proof, effi-

cient, and satisfy a minimal level of fairness (MB), then we must accept the

violations of fairness caused by trades in the first round of TTC. Theorem

1 demonstrates that if we want a mechanism to also satisfy a minimal level

of consistency (IIR), then the fairness distortions caused by TTC are neces-

sary. It was well known that it is impossible for a mechanism to be strategy

proof, efficient, and stable.8 However, our results show that TTC can be

interpreted as the most fair among strategy proof, efficient mechanisms that

are minimally consistent.

8Roth (1982) points out that a stable and efficient assignment need not always exist.

Kesten (2010) demonstrates that there is no efficient and strategy proof mechanism that

always selects an efficient and stable assignment when it exists.
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Theorem 1 (strategy proof Characterization). A mechanism φ is strat-

egy proof, efficient, IIR, and satisfies mutual best if and only if φ(R,�) =

TTC(R,�) for all R ∈ R and �∈ C.

Proof. Lemma 1 establishes that TTC satisfies IIR. It is well known that

TTC is strategy proof, efficient, and satisfies MB. We state this formally in

Lemma 3. For the only if direction, consider any R and �. Let Ik be the

set of agents who are matched in step k of TTC(R,�). For convenience,

define I<k := ∪1≤j<kIj. We proceed by induction on k. For our inductive

hypothesis, we assume that φ(R,�)(i) = TTC(R,�)(i) for all i ∈ I<k and

that I<k is φ(R,�)-invariant. We will prove that φ(R,�)(i) = TTC(R,�)(i)

for all i ∈ I<k+1 and that I<k+1 is φ(R,�)-invariant. Lemma 2 establishes

the base inductive step. Let O<k = {a ∈ O|φ(R,�)(i) = a for some i ∈ I<k}.
Suppose for contradiction that there exists an i ∈ Ik such that φ(R,�)(i) 6=
TTC(R,�)(i) and let C = {o1, i1, . . . , oK , iK} be the cycle defined by TTC

such that i ∈ C. Without loss of generality, let i = iK .

For a 6∈ O<k, define a priority ordering �′a as follows:

i ∈ I<k, j 6∈ I<k j �′a i
i, j ∈ I<k i �′a j ⇔ i �a j
i, j 6∈ I<k i �′a j ⇔ i �a j

In words, for objects not assigned to members of I<k, �′a lowers the priorities

of all agents in I<k below those not in I<k. Otherwise, it leaves the relative

ordering of agents unchanged. For all a ∈ O<k, let �′a=�a. In particular, �′

is an I<k-ranking adjustment of � for the objects not assigned to members

of I<k. I<k is TTC(R,�)-invariant. By the inductive hypothesis, I<k is
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φ(R,�)-invariant. Therefore, by IIR, it follows that:

TTC(R,�) = TTC(R,�′) (3)

and

φ(R,�) = φ(R,�′). (4)

Since TTC(R,�)(iK) 6= φ(R,�)(iK), Equations (3) and (4) imply φ(R,�′

)(iK) 6= TTC(R,�′)(iK).

Consider any oj ∈ C. By the definition of TTC(R,�), ij �oj
i for every

i ∈ I \ I<k. Therefore, by construction, ij �′oj
i for every i ∈ I \ {ij}.

For ij ∈ C define R1
ij

:= oj+1, oj, ∅ and define R2
ij

:= oj, ∅. Repeating the

argument in Lemma 2, we find that for every ij ∈ C and any preferences

R′−ij of the other agents,

φ(R2
ij
, R′−ij ,�

′)(ij) = oj. (5)

Similarly,

φ(R1
ij
, R′−ij ,�

′)(ij) ∈ {oj+1, oj} . (6)

and

φ(R1
C , R−C ,�′)(ij) = oj. (7)

However, Eq (7) leads to a contradiction. If φ(R1
C , R−C ,�′)(ij) = oj for

every ij ∈ C, then φ is inefficient as we can reassign each ij ∈ C to oj+1,

leave all other assignments unchanged, and Pareto improve φ(R1
C , R−C ,�′).

Therefore, for every i ∈ Ik, φ(R,�)(i) = TTC(R,�)(i). Combining this
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with the inductive hypothesis yields φ(R,�)(i) = TTC(R,�)(i) for every

i ∈ I<k+1. The preferences of agents in I \ I<k+1 and the priorities of objects

in O \ O<k+1 are irrelevant to the preceding argument. Therefore, I<k+1 is

φ(R,�)-invariant.

It is well known that TTC is strategy proof, efficient, and satisfies MB. We

state this formally in Lemma 3.

Definition 5. Preferences R′i monotonically transform Ri at a (R′i m.t.

Ri at a) if for all b ∈ O∪{∅}, bR′ia implies bRia. R′ is a monotonic transfor-

mation at an allocation µ (R′ m.t. R at µ) if R′i m.t.Ri at µ(i) for each i ∈ I.

A mechanism φ is Maskin monotonic if whenever R′ m.t. R at φ(R,�)

then φ(R′,�) = φ(R,�). A mechanism φ is weakly Maskin monotonic

if whenever R′ m.t. R at φ(R,�) then φ(R′,�)R′φ(R,�).9

Lemma 3. TTC is Maskin monotonic, weakly Maskin monotonic, efficient,

strategy proof, and satisfies mutual best.

Proof. All properties have been previously demonstrated in the literature.

Papai (2000) and Takamiya (2001) demonstrate that TTC is Maskin mono-

tonic. Maskin monotonicity implies weak Maskin monotonicity. Papai (2000)

demonstrates that TTC is efficient and strategy proof. If an agent has high-

est priority at her most preferred object, then the agent and object form a

cycle in the first round of TTC. Therefore, TTC satisfies mutual best.

Corollary 2 (Maskin characterization). A mechanism φ is Maskin mono-

tonic, efficient, IIR, and satisfies MB if an only if φ(R,�) = TTC(R,�) for

all R ∈ R and �∈ C.
9The relationship between weak Maskin monotonicity, Maskin monotonicity, and DA

is discussed extensively in Kojima and Manea (2010).
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Proof. Maskin monotonicity is equivalent to group strategy proofness for an

allocation rule which implies strategy proofness (Takamiya 2001).

3.2 Weak Maskin Monotonicity

DA satisfies weak Maskin monotonicity but not Maskin monotonicity.10 We

introduce a characterization of TTC in terms of weak Maskin monotonicity

so that we may directly compare TTC to a known characterization of DA.

Theorem 3 (Weak Maskin Characterization). A mechanism φ satisfies weak

Maskin monotonicity, efficiency, IIR, and mutual best if and only if φ(R,�
) = TTC(R,�) for every R ∈ R and �∈ C.

Proof. We prove that a weakly Maskin monotonic and efficient mechanism

is Maskin monotonic. The characterization then follows immediate from

Corollary 2. Let R′ m.t. R at φ(R,�). By weak Maskin monotonicity,

φ(R′,�)R′φ(R,�). Therefore, for every i either φ(R′,�)(i) = φ(R,�)(i) or

φ(R′,�)(i)P ′iφ(R,�)(i). However, if φ(R′,�)(i)P ′iφ(R,�)(i), then φ(R′,�
)(i)Piφ(R,�)(i). Therefore, if φ(R′,�) 6= φ(R,�) then φ(R′,�) Pareto im-

proves φ(R,�) under preferences R which would contradict the efficiency of

φ. Therefore, if a mechanism is weakly Maskin monotonic and efficient, then

the mechanism is Maskin monotonic.

We are now able to make a direct comparison between TTC and the deferred

acceptance algorithm using a characterization from Morrill (2011).11 That

10See Kojima and Manea (2010).
11The characterization in Morrill (2011) is based on an earlier characterization by Ko-

jima and Manea (2010).
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characterization uses the property of population monotonicity. Intuitively, an

allocation rule is population monotonic if agents are weakly better off when

they compete against fewer agents. For convenience, population monotonic-

ity is defined in terms of a subgroup finding all objects unacceptable rather

than not participating in the assignment. Specifically, let R∅ denote the

preference profile that ranks ∅ (being unassigned) first for every agent.

Definition 6. A mechanism φ is population monotonic if

φ(RI′ , R
∅
I\I′)(i)Riφ(R)(i) ∀i ∈ I ′,∀I ′ ⊂ I,∀R ∈ R.

As a reminder, an assignment rule is non-wasteful if any object that an agent

prefers to her assignment has been allocated up to its quota to other agents.

Theorem 4 (Theorem 1, Morrill (2011)). A mechanism φ satisfies non-

wastefulness, population monotonicity, weak Maskin monotonicity, and mu-

tual best if and only if it is the deferred acceptance algorithm.

Theorem 3 and 4 allow us to make a direct comparison between TTC and

DA. Non-wastefulness is only necessary to rule out trivial mechanisms.12 In

particular, DA satisfies weak Maskin monotonicity, mutual best, and IIR

while TTC satisfies weak Maskin monotonicity, non-wastefulness, and mu-

tual best. Traditionally, the difference between TTC and DA is described as

efficiency versus stability. While efficiency versus stability remains the most

12For example, the mechanism that assigns mutual top choices but leaves all other

agents unassigned is trivially population monotonic, weakly Maskin monotonic, and satis-

fies mutual best. Non-wastefulness is only necessary to rule out these types of degenerate

mechanisms.
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informative comparison, our characterization provides a new distinction be-

tween the two mechanisms. TTC is efficient but not population monotonic

while DA is population monotonic but not efficient.

Efficiency is one of the most important goals of a market designer. On

the other hand, a market designer does not aim to make current agents

worse off when the population being assigned is expanded. Rather, this is

the expected byproduct of increased competition for the same resources. In

this sense, population monotonicity is not inherently desirable but rather a

property that we expect to hold. In fact, we may think of situations where

agents benefit from the participation of other agents. For example, consider a

school board that would like to implement TTC to make school assignments

but is only willing to change the assignment mechanism if enough students

participate. Suppose for political reasons the board decides they will only run

TTC if at least two thirds of the students submit preferences; otherwise, the

board will keep the status quo assignment. In this scenario, a student who

is unhappy with her current assignment may benefit from the participation

of other students if otherwise the number of participating students is below

the threshold.

4 Top Trading Cycles with general capacities

Interestingly, TTC loses some of its desirable properties when objects may be

assigned to more than one agent. For example, Kesten (2006) demonstrates

that under TTC an agent is sometimes made worse off when the capacities

of some or all of the objects are increased. Similarly, under TTC agents are
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sometimes worse off when they compete against fewer students for the same

objects.13 In contrast, under DA students are always made better off by

increased capacity and decreased competition.

IIR is a new condition that is satisfied by DA but violated by TTC when

objects may be assigned to more than one agent. We demonstrate that TTC

violates IIR with Example 2. This demonstrates that the characterizations

presented in Theorem 1 and 3 do not generalize to the case when objects

may be assigned to more than one agent.

Example 2 (TTC violates IIR). Suppose there are three agents {i, j, k} and

two objects {a, b}. a’s capacity is two, and b’s capacity is one. Define R and

� according to the following rank-order lists:

Ri Rj Rk �a �b
b a b i j

a b a j k

k i

In the first round of TTC, {i, b, j, a} form a cycle. Therefore, TTC(R,�)

assigns i, j, and k to b, a, and a respectively. Moreover, {j} is TTC(R,�)-

invariant as j has one of the two highest priorities at her most preferred

object which has a capacity of two. Therefore, TTC will always assign j to a

regardless of i and k’s preferences or j’s priority at b. However, consider the

following j-ranking adjustment �′b:= k, i, j. Now, TTC(R,�′) assigns i, j,

and k to a, a, and b respectively. Therefore, when TTC may have capacities

greater than one, TTC violates IIR.

13These properties are called resource monotonicity and population monotonicity, re-

spectively. See Kesten (2006) for a formal definition.

23



Notice that in Example 2, the first trade in TTC(R,�) is unnecessary; j

does not need to trade with i in order to be assigned a. However, this

trade causes a distortion. This trade does not affect j’s assignment, but it

results in i being assigned to b despite k preferring b to a and having higher

priority than i at b. Morrill (2012) demonstrates that we may implement

the second assignment with a strategy proof, efficient, and MB mechanism.

Therefore, we may no longer interpret TTC as being the strategy proof and

efficient algorithm that satisfies MB with the minimum number of distortions

to fairness.

It remains an open question as to how to characterize TTC when objects may

be assigned to more than one agent. Morrill (2012) introduces a variation on

TTC that first checks if an agent has one of the qa highest priorities at her

most preferred object a, where qa is the capacity of a, before allowing her to

point to a. If she is one of the qa highest priority students, then she is assigned

a and not allowed to trade her priority at any other object. Note that this

mechanism satisfies A&C’s property of recursively respecting top priorities

but does not always produce the same assignment as TTC. Therefore, their

characterization does not immediately generalize to arbitrary capacities.

5 Conclusion

Abdulkadiroglu and Che (2011) is an important paper for market design

both because it increases our understanding of a key algorithm, top trading

cycles, and because it provides a way of explaining to a policy maker what

differentiates top trading cycles from all other strategy proof and Pareto
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efficient allocation mechanisms. Our paper makes a similar contribution by

providing several new characterizations of TTC.

In particular, we provide separate characterizations in terms of strategy

proofness, Maskin monotonicity, and weak Maskin monotonicity. This al-

lows us to make a direct comparison between top trading cycles and the

deferred acceptance algorithm. It also provides another explanation of what

differentiates top trading cycles from all other strategy proof and efficient

mechanisms. In particular, top trading cycles is the only such mechanism

that satisfies mutual best and independence of irrelevant rankings. Both of

these properties are desirable attributes of an allocation mechanism. More-

over, they are simple and intuitive to explain to a policy maker.

6 Appendix

Lemma 1 Top trading cycles satisfies IIR when objects may be assigned to at

most one agent. The deferred acceptance algorithm, the Boston mechanism,

and a random serial dictatorship all satisfy IIR regardless of the capacities

of the objects being assigned.

Proof. Top trading cycles:

Fix R and � and let I ′ be a TTC(R,�)-invariant set. Let µ = TTC(R,�
). For any i ∈ I ′, i’s most preferred object a must be contained in µ(I ′).

Otherwise, if �′a is the {i}-ranking adjustment that gives i highest priority

at a, then TTC(R,�−a,�′a)(i) = a 6= TTC(R,�)(i), violating invariance.

Similarly, if a ∈ µ(I ′) and i is the agent with highest priority at a, then

i ∈ I ′. Otherwise, if i ranks a first, then µ(a)’s assignment under TTC is
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changed, violating invariance. Therefore, in the first round of TTC, every

agent in I ′ points to an object in µ(I ′) and vice versa. This implies that

there must be a cycle consisting entirely of agents in I ′ and objects in µ(I ′).

Choose one cycle (there may be more than one), and label the agents in the

cycle A1. Consider any i ∈ I ′ \ A1, and let a be i’s most preferred object

among O \ µ(A1). As before, it must be that a ∈ µ(I ′) \ µ(A1). Otherwise,

if �′a is the {i}-ranking adjustment that gives i highest priority at a, then

TTC(R,�−a,�′a)(i) = a 6= TTC(R,�)(i), violating invariance. Similarly,

for any a ∈ µ(I ′) \ µ(A1), the agent with highest priority at a (other than

possibly agents in A1) must be contained in I ′ \ A1. Again, there must be

a cycle, this cycle is contained in I ′ \ A1 and µ(I ′) \ µ(A1), and this is a

trading cycle in TTC. By iterating this argument we can partition I ′ into

{A1, A2, . . . , Ak} where Ai is a set of agents in a cycle in TTC after removing

the agents A1 ∪ . . . Ai−1 and their assignments. By following this order of

choosing cycles, we can assign all of the agents in I ′ before we consider

any agent outside of I ′. Since the order in which TTC processes cycles is

irrelevant to the final assignment,14 the priorities of agents in I ′ at objects

outside of µ(I ′) are irrelevant to any agent’s assignment, and TTC satisfies

IIR. Example 2 on Page 23 demonstrates that when objects may be assigned

to more than one agent, TTC violates IIR.

Deferred acceptance algorithm:

Fix a R and �, let I ′ be a DA(R,�)-invariant set, set DA(R,�) = µ, and let

O′ = µ(I ′). Consider any i ∈ I ′. It must be that µ(i)Pia for any a 6∈ µ(I ′).

Otherwise, if �′a is the {i}-ranking adjustment that gives i highest priority

at a, then DA(R,�−a,�′a)(i) 6= DA(R,�)(i) as i is never rejected by a and

14See Abdulkadiroglu and Sonmez (1999).
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i only proposes to µ(i) if she is rejected by a. This would contradict the

invariance of I ′. However, i’s priority at any object she finds strictly inferior

to µ(i) is irrelevant to i’s assignment or any other agent’s assignment as i

never proposes to that object. Therefore, if we adjusted i’s ranking at any

object not assigned to a member of I ′ and reran DA, no assignment would

be changed.

The Boston mechanism:

In the Boston mechanism, an agent’s priority at an object is only used as

a tie-breaker when more than one agent applies to the same object in the

same round. Fix a R and �, and let φ(R,�) assign students according to

the Boston mechanism. Suppose I ′ is φ(R,�)-invariant, and let O′ = φ(R,�
)(I ′). It must be that for any a ∈ O \O′, i never applies to a. Otherwise, let

�′a be an i-ranking adjustment that gives i highest priority at a. This has

no affect on the Boston mechanism until i applies to a, but under �′a i is

assigned a. As this changes i’s assignment, this is a violation of invariance.

Since each i ∈ I ′ never applies to any a 6∈ O′, the priorities of I ′ at objects

in O \O′ are irrelevant.

Random serial dictatorship:

Priorities are irrelevant to a random serial dictatorship. Therefore it trivially

satisfies IIR.

We prove the independence of our axioms in Theorems 1 and Theorem 3

through a series of examples. Example 3 demonstrates the independence of

mutual best.

Example 3 (Mutual Best). A serial dictatorship is efficient, strategy proof,

weakly Maskin monotonic, and IIR. A serial dictatorship violates mutual
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best.

Example 4 demonstrates the independence of weak Maskin monotonicity and

strategy proofness in the characterizations. The mechanisms in Examples 4

and 5 are discussed in greater detail in Abdulkadiroglu and Sonmez (2003).

Example 4 (Weakly Maskin Monotonic, Strategy Proof). The Boston mech-

anism is efficient, IIR, and satisfies mutual best. However, it is not strategy

proof, weakly Maskin monotonic, or Maskin monotonic.

Example 5 demonstrates the independence of efficiency.

Example 5 (Efficiency). DA is strategy proof, weakly Maskin monotonic

and satisfies MB and IIR. It is well known that DA is not efficient.

Example 6 demonstrates the independence of IIR.

Example 6 (IIR). Consider the following special case. There are three

agents {i, j, k} and three objects {a, b, c}. Whenever R and � are such that

i has highest priority at all objects, a is i’s most preferred object, bPjc, and

bPkc, then we define φ(R,�) as follows. If j �b k, then φ(R,�) assigns i,

j, and k to a, c, and b respectively. For every other case (agents, object,

preferences, and priorities), φ runs TTC. This mechanism is efficient. φ is

strategy proof as TTC is strategy proof and in the special case, if j reports

that she prefers c to b, then we run TTC and j will still be assigned c. φ also

satisfies MB as TTC satisfies MB and in the special case, only i has highest

priority at her most preferred object. However, φ violates IIR. Consider a R

and � so that we are in the special case. {i} is φ(R,�)-invariant as φ satisfies

MB and i has highest priority at her most preferred object a. However, if
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we consider the {i}-ranking adjustment �′b:= j, i, k, then we are no longer

in the special case. Therefore, φ(R,�′b,�−b)(j) = TTC(R,�′b,�−b)(j) = b.

Since φ(R,�)(j) = c, this violates IIR.
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