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Abstract

Surprisingly, nearly every school district that utilizes a centralized assignment pro-

cedure makes a Pareto inefficient assignment. The two objections to the standard

efficient algorithm, Top Trading Cycles (TTC), are that it makes unfair assignments

and that it allows students to trade school-specific priorities. This paper identifies

two shortcomings of TTC: students may trade even after they are guaranteed their top

choice and the students who trade are chosen myopically. We introduce algorithms that

correct these flaws and demonstrate through simulations that this makes the resulting

assignment significantly fairer and effectively eliminates the trading of school-specific

priorities.
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When choosing an assignment mechanism a school board must balance the following three

priorities: strategyproofness, Pareto efficiency, and fairness. Efficiency and fairness are in-

compatible in the sense that there may not always exist an assignment that is both fair and

efficient (Roth 1982). Strategyproofness is also incompatible with efficiency and fairness as

there does not exist a strategyproof mechanism that always selects a fair and efficient assign-

ment even when one exists (Kesten 2010). Fortunately, there are well known algorithms that
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satisfy any two of the three priorities. Typically, a school board faces a decision between

Gale’s Top Trading Cycles algorithm (hereafter TTC), which is strategyproof and efficient,

and Gale and Shapley’s Deferred Acceptance algorithm, which is strategyproof and fair.

From an economic standpoint, the most fundamental of these conditions is Pareto efficiency.

Schools are a public resource, and it is clearly undesirable to allocate a public resource in

a Pareto inefficient manner. And yet, this is what nearly every school district has chosen

to do.1 When choosing between an efficient assignment algorithm and a fair assignment

algorithm, virtually every school district has chosen Deferred Acceptance, the fair assignment

algorithm.2 The only school district we know of that has implemented TTC is New Orleans.3

Boston was the first city to consider implementing these algorithms, and indeed, TTC was

their initial recommendation. The following passage from the Boston Public Schools Student

Assignment Task Force describes their thought process when deciding between the Deferred

Acceptance algorithm and TTC (emphasis is theirs):4

The Gayle [sic] Shapley algorithm is driven by priorities only, which cuts down on

the amount of choice afforded to families. The Top Trading Cycles algorithm also

takes into account priorities while leaving some room for choice. Since choice was

very important to many families who attended the community forums, we believe

that having an assignment algorithm that leaves some room for choice is best.

Further, neither Gayle [sic] Shapley or Top Trading Cycles can be manipulated

by parental gaming. We also believe that the Top Trading algorithm will enable

the BPS to ensure that the 50% walk preference remains sacred throughout all

the assignment rounds. Therefore, we strongly recommend that the BPS adopt

the Top Trading assignment algorithm.

1As an example of the inefficiency, Abdulkadiroğlu et al. (2009) found that in the 2006-2007 assignment
of eighth graders in New York City, more than 4,000 students could have been assigned to a more preferred
school without harming any student.

2Cities that have adopted a version of the student-proposing Deferred Acceptance algorithm include New
York City (Abdulkadiroğlu et al. 2005b, 2009), Boston (Abdulkadiroğlu 2005a), and Chicago (Pathak and
Sönmez, forthcoming). Denver will begin using Deferred Acceptance in 2012. Recently, Deferred Acceptance
has been adopted by all local authorities in England (Pathak and Sönmez, forthcoming).

3San Fransisco voted to implement TTC, but they have not made the algorithm they use public.
4See page 15 of the Student Assignment Task Force, submitted to Boston School Committee on September

22, 2004. It is available at http://www.bostonpublicschools.com/assignment.
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Although the task force strongly recommended TTC, the school board ultimately chose to

implement Deferred Acceptance. Interestingly, the stated reason for this change was not a

concern over fairness but rather that some priorities are school specific, such as having a

sibling attend the same school or a student being able to walk to a school, and therefore

should not be tradeable. In his memo to the Boston School Committee discussing the choice

of algorithm, Superintendent Payzant writes: 5

Another algorithm we have considered, Top Trading Cycles Mechanism, presents

the opportunity for the priority for one student at a given school to be “traded”

for the priority of a student at another school, assuming each student has listed

the other’s school as a higher choice than the one to which he/she would have

been assigned. There may be advantages to this approach, particularly if two

lesser choices can be “traded” for two higher choices. It may be argued, however,

that certain priorities – e.g., sibling priority – apply only to students for particular

schools and should not be traded away

It is well known that TTC is strategyproof, efficient, and unfair. What is not known is

whether or not there exists an algorithm that is strategyproof, efficient, and fairer6 than

TTC. Similarly, if a school board wishes to restrict the trade of certain priorities, is it possible

to reduce the occurrence of these undesirable trades? This paper provides a positive answer

to both questions. We introduce a strategyproof and efficient algorithm that is significantly

fairer than TTC. Moreover, we show that we may effectively eliminate trading of “restricted”

priorities. Since school boards clearly place a great emphasis on both fairness and limiting

the trading of school-specific priorities, the hope is that the our algorithm will make school

boards more inclined to adapt a Pareto efficient assignment algorithm.

TTC was introduced in Shapley and Scarf (1974) to find a competitive solution for the

Shapley-Scarf housing market. In this model, each student is endowed with a house. The

algorithm proceeds as follows. Each student points to her favorite house, and each house

points to its owner. As there are a finite number of students, there must exist a cycle. In

5This memo can be found at http://www.iipsc.org/resources/tpayzant-memo-05.25.2005.pdf. Accessed
August 6, 2013.

6When we say an assignment is fairer, we mean that it has fewer instances of justified envy.
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each cycle, assign the student to the house she is pointing to, remove the students and houses

assigned, and continue. This algorithm has many desirable features. It is Pareto efficient,

strategyproof, individually rational, and makes the unique assignment that is in the core of

the assignment problem (Roth and Postlewaite, 1977).

The school assignment problem differs from the house assignment problem in two important

ways: schools may be assigned to more than one student, and no student ‘owns’ a school.

Nevertheless, TTC generalizes to the school assignment problem in a natural way.7 Each

student points to her most preferred school. Each school points to the student with highest

priority. For each cycle, assign the student to the school she is pointing to, remove the

student, and reduce the capacity of the school by one. When a school has no remaining

capacity, remove the school. This process is repeated until all students are assigned or there

are no remaining schools.

The differences between the school assignment and housing allocation problems are critical

and give us an opportunity to improve the performance of TTC. The trading cycles, which

make TTC efficient, are also what make TTC unfair. Each student in a cycle has highest

priority at the school pointing at her, but she is assigned the school she is pointing to. Since

her priority at her assignment is not considered, assigning her to that school is potentially

unfair. This is how we are able to improve TTC in terms of fairness. First, we will demon-

strate that TTC makes more trades than is necessary. Second, we demonstrate that these

trades can be made in a more sophisticated way and thereby reduce the chances that the

trade results in a violation of fairness.

Our first innovation is to reduce the number of trades we utilize to make an assignment. A

reasonable restriction on an assignment algorithm is that if student i’s favorite school is a,

a has capacity for qa students, and i is one of the qa highest ranked students at a, then i

is assigned a. This condition is called mutual best.8 We define a student to be guaranteed

a spot at a if i has one of the qa highest priorities at a. TTC satisfies mutual best; if i is

guaranteed a spot at her most preferred school a, then i is always assigned to a. However,

unless i has the highest priority at a, TTC allows her to trade her priority at a different school

7This generalization of TTC was introduced in Abdulkadiroğlu and Sönmez (2003).
8Note that not all algorithms used in practice satisfy mutual best. For example, a serial dictatorship

and linear programing procedure do not satisfy mutual best. See Morrill (2012a) and Morrill (2012b) for
discussions on how mutual best relates to Deferred Acceptance and TTC, respectively.
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in order to be assigned to a. This trade is not necessary for efficiency, strategyproofness, or

mutual best, and as a result, it introduces potentially unnecessary violations of fairness. Our

first innovation is to introduce an algorithm, Clinch and Trade (C&T), that avoids these

unnecessary trades.

Our second innovation is to have each school point in a more sophisticated manner. In

any algorithm that satisfies mutual best, the student with highest priority at a school a

cannot be assigned to a school she finds worse than a. However, it does not imply that this

student must be satisfied before any of the other students who are also guaranteed a seat

at a. In particular, a school with capacity q does not need to point to the student with

highest priority but rather must point to one of the q-highest-priority students. Pointing to

the student with highest priority is myopic as this student does not necessarily have high

priority at other schools. Since the school priorities are known to the mechanism designer,

a better approach is to point to the student that is most likely to have high priority at the

school she points to. We call this Prioritized Trading Cycles (PTC). We demonstrate that

PTC is strategyproof and efficient. Our final, and preferred, algorithm combines the two

innovations. We call this Prioritized Clinch and Trade (PC&T).

A key advantage of PC&T is that we may control which of the students trade their priorities.

For example, in Boston Public Schools if a child’s sibling attends a school, then she is given

highest priority at that school. However, the school board objected to allowing students to

trade sibling priorities. We are able to easily modify PC&T in the following way to address

this concern. Suppose school A has a capacity of q but the school board does not want

to allow q′ < q of the students to trade their priorities. We call these priorities restricted

priorities. Instead of pointing to the student with the highest average ranking at other

schools among the q highest priority students, we simply point to the highest ranked student

among the q − q′ students that have unrestricted priorities. We show that this effectively

eliminates the trading of restricted priorities; however, this reduction comes at a cost to

fairness.

We next explore which of the four algorithms is the most fair. Given that two algorithms

are unfair, we interpret algorithm A to be fairer than algorithm B for a given assignment
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problem if on average there are fewer instances of justified envy under A than under B.9 We

run a wide variety of simulations to compare the relative fairness of the four algorithms, and

we consistently find that PC&T is the fairest followed by PTC, and then Clinch and Trade.

TTC is consistently the least fair among the algorithms and often by a wide margin.

Our paper is a contribution to the recent literature on school choice pioneered by Abdulka-

diroğlu and Sönmez (2003). Abdulkadiroğlu (2013) is an excellent survey on the literature.

Our paper is similar in spirit to Erdil and Ergin (2008) and Abdulkadiroğlu, Pathak, and

Roth (2009). These papers demonstrate that a seemingly innocuous feature of the deferred

acceptance algorithm, how ties in a school’s priority ranking are broken, can have a sig-

nificant impact on the efficiency of deferred acceptance. Our paper also contributes to the

literature on alternatives to TTC for making a Pareto efficient assignment. Papai (2000) in-

troduces and characterizes a generalization of TTC called hierarchical exchange rules. Pycia

and Unver (2010) characterize the set of Pareto efficient and group strategyproof mechanisms

by generalization hierarchical exchange rules to a class of rules called trading cycles.

Most similar to our paper is Kesten (2004). Kesten (2004) introduces several important and

innovative algorithms including the Efficiency Adjusted Deferred Acceptance Algorithm later

described in Kesten (2010). Most relevant to the current paper is his algorithm Equitable

Top Trading Cycles (ETTC) which addresses the same question that we do; is it possible to

make TTC fairer? Roughly speaking, ETTC proceeds as follows. If school a has qa available

spots, then each of the top qa-ranked students at a are allocated a seat at a. The algorithm

considers student-school pairs (i, a) where i has been allocated a seat at a. Each pair (i, a)

points to the unique pair (j, b) such that b is i’s favorite school and j has the highest priority

at a among students that have been allocated b. There must exist at least one cycle, and the

algorithm assigns each student in a cycle to its favorite available school. There are a number

of important additional details for which the reader should refer to the paper. For example,

a student i may appear in multiple cycles or even the same cycle multiple times. All cycles

are processed, but as i is only assigned one copy of her favorite school, Kesten defines an

inheritance procedure for the “extra” copies. Similarly, after a student i is assigned, there

is an inheritance procedure for the schools that i was allocated but i did not use in a trade.

9There are, of course, many alternative ways one could define ‘fairer’. A particularly strong condition
would be that algorithm A is fairer than algorithm B if A is never unfair whenever B is fair. Under this
definition, none of the four algorithms are comparable.
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ETTC is strategyproof and Pareto efficient.

ETTC and our algorithms were developed independently and consequently take different

approaches; however, both algorithms address the same shortcomings of TTC. In Kesten’s

definition of ETTC, if i’s favorite school is a and i has been allocated a seat at a, then

all student-seat pairs involving i point to (i, a). This serves much of the same role as our

clinching procedure, and in particular, a student does not trade her priority at a different

school in order to be assigned to a school she was initially guaranteed to be admitted to. A

key difference is that C&T is able to iterate the clinching procedure whereas the inheritance

rules of ETTC wait until each person initially allocated a school has been assigned before

proceeding with the inheritance. Kesten’s algorithm is also strategic in its pointing process

unlike TTC which is myopic. The fact that each student-school pair (i, a) points to the

student with highest priority at school a means that ETTC handles cycles of length two

perfectly. If (i, a) and (j, b) form a cycle in ETTC, then among students guaranteed a seat

at a, j is the student least likely to cause justified envy and vice versa. In this way, ETTC

is superior at handling cycles of length two than PC&T as PC&T considers a student’s

priority at all schools. However, for cycles of length greater than two, it is better to consider

a student’s ranking at all schools as this additional information is relevant.

1 Model and Algorithms

We consider a finite set of students I = {1, . . . , n} and a finite set of schools S = {a, b, c, . . .} .
Each school a has a capacity for qa ≥ 1 many students. Each student i ∈ I has a complete,

irreflexive, and transitive preference relation Pi over S ∪ {∅}. ∅ represents a student being

unassigned, and q∅ = ∞. aPib indicates that i strictly prefers school a to b. Given Pi, we

define the symmetric extension Ri by aRib if and only if aPib or a = b.

Each school a ∈ S has a complete, irreflexive, and transitive priority rule �a over I. In

particular, i �a j is interpreted as student i has a higher priority for school a than student j.

We define � analogously to our definition of R. An assignment is a function µ : I → S∪{∅}
such that for each a ∈ S, | {i ∈ I|µ(i) = a} | ≤ qa. An assignment is Pareto efficient if

there does not exist another assignment ν such that ν(i)Riµ(i) for every i ∈ I and ν(i)Piµ(i)
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for some i. An assignment µ is fair if there does not exist a student i and a school a such

that aPiµ(i) and i �a j for some j such that µ(j) = a.

Given a school a with quota qa, let Ga be the qa-highest-ranked students at a. We say a

student in Ga is guaranteed a spot at a. An assignment mechanism φ is a function from

a preference profile of student and priority profile of schools to an assignment. A mechanism

φ is strategyproof if reporting true preferences is each student’s weakly dominant strategy.

Abdulkadiroğlu and Sönmez (2003) give a detailed descriptions of TTC. Given strict pref-

erences of students and strict priority lists for schools, TTC assigns students to schools

according to the following algorithm. In each round, each student points to her most pre-

ferred remaining school, and each school with available capacity points to the remaining

student with highest priority. As there are a finite number of students, there must exist a

cycle {o1, i1, . . . , oK , iK} such that each school, oj, and student, ij, points to ij and oj+1,

respectively (with oK+1 ≡ o1). For each cycle, student ij is assigned to school oj+1, ij is re-

moved, and the capacity of oj+1 is reduced by one. When a school has no remaining capacity,

it is removed.

TTC is efficient, because each student in a cycle receives her most preferred school among

those that have already been assigned. Therefore, we cannot improve a student’s assignment

without harming a student that has been previously assigned. If there is a path from a

school a to a student i, then i has the ability to be assigned to a by pointing at a. TTC is

strategyproof for two reasons. First, a student’s report does not effect which student a school

points to. Second, once there exists a path from a school a to a student i, that path remains

until i is assigned. When i is assigned, she receives her most preferred school among those

with available capacity, so by revealed preference, she must weakly prefer her assignment to

a. Therefore, she never does better than by pointing to her favorite school.

In particular, so long as we preserve paths once they exist and do not use student preferences

to determine which student each school points to, then our algorithm will continue to be

strategyproof.10

Prioritized Trading Cycles (PTC)

10For example, if each school points to the student with highest priority at her most preferred school, then
the algorithm would no longer be strategyproof.
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Round 1:

Have each student point to her favorite school. Have each school a point to the student in Ga

with the highest average rank11 at schools other than a. There must exist a cycle. For each

cycle, assign the student the school she is pointing to and remove her. Reduce the quota of

each school in a cycle by one, and remove any school that now has a capacity of zero.

Round i:

Have each student point to her favorite school. If the student a school was pointing to in

round i−1 has not yet been assigned, have the school continue to point to the same student.

Otherwise, have each school a point to the student in Ga with the highest average rank at

schools other than a. Assign any student in a cycle to the school she is pointing to, and

remove students and reduce quotas accordingly.

The algorithm continues until all students have been assigned or no school has available

capacity. We make no claim that pointing to the student with highest average rank is the

optimal decision rule. In fact, one can imagine alternatives that might be superior. For

example, if school a is typically over demanded and school b is typically under demanded,

then we should weight a’s priorities more heavily and perhaps not consider b’s priorities at

all. The optimal decision rule is outside the scope of this paper, but we demonstrate that the

ad-hoc rule of taking the highest average ranking at other schools significantly outperforms

simply pointing at the student with highest priority.

Proposition 1. PTC is efficient, strategyproof, and satisfies mutual best.

Proof. We prove something more general. Consider any decision rule to determine which

student a school points to that does not depend on the preferences of the students. We prove

the following. So long as the algorithm has each school continue to point to the same student

until that student is assigned, and so long as each school a always points to a student in Ga,

then the algorithm will satisfy mutual best, strategyproofness, and efficiency.

11We refer to “highest average rank” for expositional convience. In practice, we utilize a more sophis-
ticated procedure. First, when calculating the average, we do not consider a students rank at schools she
is gauranteed to be admitted to as she can not cause justified envy at such a school. Second, we weight
the ranking at schools by the available capacity of the school with schools with fewer seats weighted more
strongly than schools with larger capacity. Note that the procedure is strategyproof and efficient for any
decision rule used to select one of the gauranteed students.
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Consider any student i and school a such that a is i’s most preferred school and i ∈ Ga. At

most one school can be assigned to a in a given round. Since a always points to a student in

Ga, then if a student not in Ga is assigned to a, in the same cycle a student in Ga must be

assigned to a school other than a. Therefore, if i is not assigned to a in round k, then i ∈ Ga

in round k + 1. As a result, a can only reach full capacity, Ga = ∅, after i is assigned. Since

a always points to a student in Ga, eventually a must point to i, and therefore, i is assigned

to a.

To prove strategyproofness, consider any student i and preference profile P of the students.

We fix the preferences of the students other than i, and at the start of each round, we allow

i to point at whatever school she wishes. Suppose for contradiction that there is some round

where i does strictly better by pointing at an object other than her most preferred school,

and let k be the last round i is able to benefit by misreporting. If i does not form a cycle

in round k, then her report in this round does not effect the outcome, and she may make

the same misreport in the next round and receive the same assignment. This contradicts k

being the latest round she is able to profitably misreport her preferences. If k does form a

cycle by pointing at a school b even though her most preferred school a still has available

capacity, then there is a path from b to i. If i had pointed at her true favorite a instead of

b then she could not have formed a cycle as otherwise pointing at b is not be a profitable

misrepresentation. Therefore, if i points to a in round k, b is not assigned in round k and

indeed the entire path from b to i is preserved through round k + 1. Therefore, i can make

the same profitable misrepresentation in round k+1 as in round k which contradicts k being

the last round i is able to profitably misreport her preferences. Therefore, i never does better

than pointing at her most preferred school.

Finally, for efficiency, each student in round 1 is assigned to her most preferred school and

therefore cannot be made strictly better off. If a student i in round 2 is not assigned her most

preferred school, then that school was assigned to capacity in round 1. Any reassignment

that makes i strictly better off must make a student from round 1 strictly worse off. Iterating

this argument, we find that no student assigned in round k may be made strictly better off

without making a student assigned in an earlier round strictly worse off. Therefore, the

algorithm is Pareto efficient.
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A second shortcoming of TTC is it allows students to trade in order to receive their favorite

school even if they are guaranteed admission to that school These trades are unnecessary

from an efficiency point of view and expose the algorithm to fairness violations. We illustrate

this with Example 1.

Example 1. Suppose there are three students {i, j, k} and two schools {a, b}. School a has

a capacity of two while school b has a capacity of one. Define R and � according to the

following rank-order lists:

Ri Rj Rk �a �b

b a b i j

a b a j k

k i

In the first round of TTC, {i, b, j, a} form a cycle. Therefore, TTC(R,�) assigns i, j, and k

to b, a, and a respectively.

In Example 1, j has one of the two highest priorities at her most preferred school which has a

capacity of two. Therefore, TTC will always assign j to a regardless of i and k’s preferences

or j’s priority at b. However, TTC allows j to make an unnecessary trade with i. This

trade causes a distortion. Compare TTC’s assignment to assigning i, j, and k to a, a and

b, respectively. This assignment respects priorities whereas the TTC assignment does not.

The only student that does not get her top choice is i, and i has lower priority at her top

choice, b, then the student assigned to b, k.

This motivates a new algorithm:

Clinch and Trade

Round 1:

1a For each i ∈ I, if i is one of the qa highest ranked student at i’s most preferred school a,

then assign i to a, remove i and set qa = qa − 1. Now iterate until no student has one

of the qa highest priorities at her most preferred school a.

1b Have each student that remains point to her most preferred school that has capacity

greater than zero. Have each school with available capacity point to the highest ranked
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student. Note that there must exist a cycle. For every cycle that exists, assign the

student to the school she is pointing to, remove the student, and reduce the capacity

of the school by one.

Round k:

k.a If the school i was pointing to in Round k−1 still has available capacity, then i continues

to point to the same school.

k.b Iteratively clinch until no student who was not pointing at the end of Round k − 1 has

one of the qa highest priorities at her most preferred school a.

k.c Have each remaining student point to her most preferred school with available capacity.

Have each school with available capacity point to the highest ranked student. Again,

there must exist a cycle. For every cycle that exists, assign the student to the school

she is pointing to, remove the student, and reduce the capacity of the school by one.

Proposition 2. Clinch and Trade is efficient, strategyproof, and satisfies mutual best.

Proof. The proof of Proposition 2 is analogous to the proof of Proposition 1. Since every

student assigned receives her favorite among unassigned schools, the algorithm is Pareto

efficient. We do not let a student that is pointing at a school clinch that school. Therefore,

the clinching process does not effect any existing path. In particular, once there exists a

path from a school a to a student i, then that path remains until i is assigned. Therefore,

i has no incentive to misrepresent her preferences and point to any school other than her

most preferred school. Similarly, a student has no incentive to clinch a school unless it is

her most preferred school. She can only clinch a school a if she is guaranteed admissions to

a, and once a student is guaranteed admissions to a school, then she never loses that status.

This also implies that Clinch and Trade satisfies mutual best as a student is never assigned

a school worse than a school she is guaranteed admissions to. For a more formal argument,

see Morrill (2012c).
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Morrill (2012c) describes a number of properties of Clinch and Trade. The algorithm is Pareto

efficient and strategyproof; however, it loses two desirable features of TTC. In particular,

Clinch and Trade is bossy12 and depends on the order in which cycles are removed. The

Deferred Acceptance algorithm is also bossy, but TTC is not.

Our preferred algorithm combines PTC and Clinch and Trade. As in Clinch and Trade, we

iteratively clinch assignments until no student is guaranteed admission to her most preferred

school. We then determine trades by using the pointing process used in PTC. Each student

points to her most preferred school. If the student a school was pointing to in round i − 1

has not yet been assigned, have the school continue to point to the same student. Otherwise,

each school a points to the student in Ga with the highest average rank at schools other than

a. We call this Prioritized Clinch and Trade (PC&T).

Corollary 1. Prioritized Clinch and Trade is strategyproof, efficient, and satisfies mutual

best.

Proof. The proof of Proposition 2 holds for any pointing function so long as 1) a school

always points to a student that is guaranteed admissions, 2) the pointing function does not

depend on the preferences of the students and (3) once a school points to a student, it

continues to point to the student until the student is assigned. Since PC&T satisfies all of

these conditions, it is strategyproof, efficient, and satisfies mutual best.

It is well known that it is impossible for a mechanism to be strategyproof, fair, and always

select an efficient assignment when a fair and efficient assignment exists. However, there

does exist a strategyproof, fair, and efficient mechanism when there are only two schools

and their is sufficient capacity for all students: PC&T. A fair and efficient assignment must

correspond to the student-optimal stable assignment, so this also implies that when there are

two schools and sufficient capacity, that PC&T corresponds exactly to the student-proposing

Deferred Acceptance algorithm. Rather interestingly, when there are N students, N schools,

and each school has a capacity of one, then PC&T is equivalent to TTC. However, when

there are N students, two schools, and the total capacity of both schools is at least N , then

PC&T is equivalent to the Deferred Acceptance algorithm.

12An assignment mechanism is bossy if a student may change the assignment of another student without
changing her own assignment.
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Proposition 3. If there are two schools and the total capacity of the two schools is greater

than or equal to the number of students, then PC&T is fair.

Proof. Label the two schools a and b and let µ be the assignment produced by PC&T. After

the iterative clinching process, it must be that every student guaranteed a spot at a prefers

b to a and vice versa. Suppose for contradiction that some student i has justified envy of the

assignment µ. Without loss of generality, µ(i) = a and there exists a j such that µ(j) = b,

bPia, and i �b j. j could not have clinched b or else since i has higher priority and b is

i’s most preferred school, i would have also clinched b. Therefore, j was assigned via a

prioritized trading cycle. Since every student in a cycle is assigned to her most preferred

school with available capacity and b must have had available capacity when j was assigned,

i could not have been assigned before j is assigned. Note that as there are only two schools,

the highest average priority at the schools other than a exactly corresponds to the highest

priority at b. Since i has a higher priority at b than j, a does not point at j if i is available.

This contradicts j being part of a prioritized trading cycle while i is unassigned.

Note that TTC is not fair when there are two schools and the schools have sufficient capacity.

We show via simulations that the intuition from Proposition 3 holds more generally. When

there are fewer schools, average priority becomes a better predictor of a student’s priority

at her favorite school. While PC&T consistently outperforms TTC, the difference is most

dramatic when their are relatively few schools with relatively large capacities.

Corollary 2. If there are two schools and the total capacity of the two schools is greater than

or equal to the number of students, then PC&T corresponds exactly to the student-proposing

Deferred Acceptance algorithm.

Proof. As is well known, the assignment generated by the student-proposing Deferred Accep-

tance algorithm Pareto dominates any other fair assignment. Since the assignment made by

PC&T is efficient and fair, it must correspond to the Deferred Acceptance assignment.
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Table 1 - Baseline Scenario
TTC C&T PTC PC&T

Instances of Justified Envy 88.88( 0.30) 84.43( 0.29) 66.81( 0.23) 61.59( 0.22)
Students with Justified Envy 9.49( 0.03) 9.47( 0.03) 8.58( 0.02) 8.42( 0.02)
Avg. Number Envied 9.34( 0.02) 8.91( 0.02) 7.83( 0.02) 7.35( 0.02)
Students Justifiable Envied 28.83( 0.05) 27.26( 0.05) 25.62( 0.05) 24.10( 0.05)
Avg. Number Envied By 3.00( 0.01) 3.02( 0.01) 2.54( 0.01) 2.48( 0.01)

This table considers several ways of evaluating the fairness of the four algorithms. In each scenario, there
are 100 students, 5 schools, and each school has a capacity for 20 students. Preferences and priorities were
uniformly drawn, and we ran 20,000 simulations. In the first row, we report the average number of instances
of justified envy for each algorithm. If a student has justified envy, the third row reports the average
number of students that she justifiably envies. The fourth row gives the average number of students that
are justifiably envied by some student. The fifth row gives the average number of students that justifiably
envy such a student.

2 Comparing the Algorithms Using Simulations

The three new algorithms introduced in the previous section are not unambiguously fairer

than TTC. That is to say, there exist assignment problems where TTC is fair but C&T,

PTC, and PC&T are not fair. The algorithms process students in different orders, and each

time a student is assigned, a new subproblem is induced. Therefore, it is straightforward

to generate an example where TTC never reaches a subproblem where it makes an unfair

assignment but each of the other algorithms does. However, we provide evidence in this

section that on average, each of the new algorithms has significantly fewer violations of

fairness than TTC.

We ran a large number of simulations over a variety of assignment problems. Each time,

we count the number of times a student has justified envy of another student. Strikingly,

there was a consistent pattern among the new algorithms. In nearly every scenario we ran,

the ranking of the algorithms from best to worst was PC&T, PTC, Clinch and Trade, and

finally TTC. The only exception to this that we have found is when there is a large amount

of excess capacity. In this scenario, Clinch and Trade can be fairer than PTC. The reason

Clinch and Trade does particularly well in this scenario is the excess capacity means that

a greater percentage of students are assigned through the iterative clinching process. Note

that PC&T still performs the best of the four algorithms in this scenario.
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Our baseline simulation model consists of 100 students, five schools, and capacities for each

school of 20. This was chosen to be consistent with Abdulkadiroğlu et al. (2012). We ran

20,000 simulations with preferences and priorities uniformly drawn. Table 1 summarizes the

performance of the four algorithms for a variety of ways of defining fairness. Our preferred

method is to count the total instances of justified envy. The reason is that it matters both

how many unfair assignments we make and how unfair these assignments are. For example, if

a student’s assignment creates justified envy, it is better if only one student justifiably envies

her than if five students justifiably envy her. Alternatively, we show the average number of

students that have justified envy and the average number of students that create justified

envy.

Table 1 demonstrates that our modifications have two impacts. First, they reduce the number

of students that have justified envy. Second, when the algorithm does assign a student in a

way that creates justified envy, there are fewer students that envy the assignment than under

TTC. The combined result of these two improvements, is that the algorithms significantly

reduce the number of instances of justified envy. For example, PTC had, on average, roughly

30% fewer violations of fairness.

Figure 1 gives the performance of the three new algorithms relative to TTC when the baseline

model is perturbed in a number of ways. Each plot shows the average number of instances

of justified envy as a percentage of TTC’s average number of fairness violations. In the

top-right figure, we keep the capacity at all schools constant but vary the number of schools.

In the bottom-left figure, we keep the number of students and schools constant but vary

the capacity of each school. In the bottom-right figure, we vary the degree to which school

priorities are correlated.

In all simulations, the three new algorithms consistently outperformed TTC. As Figure 1

indicates, there are several plausible scenarios where PC&T dramatically outperforms TTC.

For example, when there are only two schools and sufficient total capacity for all students,

PC&T is fair (Proposition 3). Note that TTC is not fair in this situation.

It is intuitive that we see the most dramatic improvement of PC&T (and PTC) relative to

TTC when there are few schools. In these algorithms, among the set of students who are

guaranteed a spot at a school, the school points to the student with the highest average rank
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Figure 1: In each scenario, we ran 20,000 simulations.
(a) Baseline - 100 students and 5 schools, each with a capacity for 20 students. This figure gives the average
number of instances of justified envy for each algorithm.
(b) Thinning Market - Here we vary the number of schools but keep the total capacity of all schools
constant at 100. Specifically, we run simulations when there are 50 schools each with a capacity of 2, 25
schools each with a capacity of 4, 20 schools each with a capacity of 5, etc. The x-axis gives the capacity of
the schools for a particular scenario. The y-axis is the each axioms average fairness violations as a percentage
of TTC fairness violations.
(c) Capacity Changes - Here we keep the number of schools constant at 5, but we vary the capacity of
each school. We start with a shortage of seats and increase until there is an excess number of total seats.
Specifically, we consider the cases where each school has a capacity for 17 through 23 students.
(d) Correlated Priorities - Here we consider the scenario where students preferences over the schools are
correlated. Specifically, for every student we specify one common ranking over schools, and for each student
we draw (uniformly) an individual ranking over schools. For a given scenario, a students ranking over the
schools is the convex combination of the two: α · individual+ (1− α) · common where α varies from 0 to 1.
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at the other schools. The fewer other schools there are, the better the average ranking is as

an estimator of the students rank at the school she ultimately points to.

PC&T also significantly outperforms TTC when there is excess capacity. This is due to the

iterative clinching process. The greater the overall capacity is, the more students have a

chance to clinch a seat. The more students that clinch seats, the fewer trades PC&T makes

relative to TTC. As the trades are where potential fairness distortions are introduced, in

this environment PC&T significantly outperforms TTC.

We provide tables in the Appendix for the average number of fairness violations for each

algorithm in each scenario.

3 Restricting Tradeable Priorities

In this section, we show how PC&T (and analogously PTC) may be easily modified if a school

board wishes to limit the trading of certain priorities. As mentioned in the introduction,

the primary objection to TTC by the school board in Boston was not fairness but rather

students being able to trade certain priorities. For example, the highest priority at a school

is given to students whose sibling attends that school, and the school board objected to

these priorities being tradeable. Similarly, if the intention of walk-zone priorities are to

either foster neighborhood school or reduce transportation costs, then a school board would

find trading these priorities undesirable. Note that TTC is particularly vulnerable to these

trades as students with a sibling that attend the school or that live within the walk zone

are typically given the highest priority at a school, and under TTC, the students with the

highest priorities are the ones most likely to be involved in a trade.

The intent of PC&T is to have each school point to the student least likely to create justified

envy at the school she is assigned. But in general, PC&T can accommodate any decision rule

and retain the same properties of strategyproofness and efficiency. In particular, suppose a

school a has capacity qa and let Sa be the qa highest ranked students. Further, suppose that

a subset of these students, Ra ⊂ Sa have priorities that a school board does not want traded.

We call Ra the set of restricted students and Sa \ Ra the set of unrestricted students at a.
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Figure 2: Average number of restricted priorities that are traded by TTC and PC&T. In each scenario,
there are 100 students and 5 schools with a capacity for 20 students. The restricted priorities are always the
highest priorities.

Then instead of pointing to the student in Sa least likely to create justified envy, we point

to the unrestricted student least likely to create justified envy. We only point to a restricted

student if there are no remaining unrestricted students. We call this modification restricted

Prioritized Clinch and Trade.

By adjusting the pointing procedure in this manner, we are able to effectively eliminate the

trading of restricted priorities. Figure 2 summarizes the impact of restricting priorities on

both TTC and restricted PT&C. In each scenario, there are 100 students, 5 schools, and

each school has a capacity for 20 students. We ran ten different scenarios. In each, the top

x priorities at a school are restricted where x varies from one to ten. For each scenario, we

ran 20,000 simulations. In each scenario, restricted PT&C reduces the number of restricted

priorities that are trade by approximately 80%.

When determining who a school should point to in the standard PT&C, we consider all

students who are guaranteed admission to a school. In restricted PT&C, we consider a

subset of students. Therefore, we expect restricted PT&C to have more instances of justified
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Figure 3: Average instances of justified envy when priorities are restricted. In each scenario, there are
100 students and 5 schools with a capacity for 20 students. The restricted priorities are always the highest
priorities.

envy than PT&C. Figure 3 compares the average number of instances of justified envy for

restricted PT&C compared to TTC and PT&C for the same simulations scenarios as in

Figure 2. As predicted, restricted PT&C is significantly fairer than TTC but less fair than

PT&C.

4 Conclusion

Abdulkadiroğlu and Sönmez (2003) demonstrate that the Top Trading Cycles is a strat-

egyproof and efficient algorithm for assigning students to schools. However, nearly every

school district has chosen the fair algorithm, Deferred Acceptance, over the efficient algo-

rithm, Top Trading Cycles. Although it is impossible for an algorithm to be strategyproof,

fair, and efficient, we demonstrate that it is possible to make Top Trading Cycles signifi-

cantly fairer. This is achieved by reducing the number of trades that Top Trading Cycles

makes and choosing the trades that it does make in a more strategic manner. As it is clearly
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undesirable to assign students to schools in a Pareto inefficient manner, hopefully by mak-

ing Top Trading Cycles fairer, more school districts will implement an efficient assignment

algorithm.
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5 Appendix

Table 2 - Response to Market Thickness
Schools Cap/School TTC C&T PTC PC&T
100 1 151.47( 0.21) 151.47( 0.21) 151.47( 0.21) 151.47( 0.21)
25 4 152.68( 0.27) 152.45( 0.27) 147.25( 0.26) 147.24( 0.26)
10 10 130.76( 0.31) 129.44( 0.31) 116.78( 0.28) 114.84( 0.28)
7 14 166.26( 0.33) 163.53( 0.32) 147.00( 0.28) 142.87( 0.28)
5 20 89.02( 0.30) 84.62( 0.28) 68.57( 0.24) 63.12( 0.23)
4 25 71.35( 0.27) 65.23( 0.25) 50.09( 0.20) 43.49( 0.19)
3 33 61.09( 0.24) 51.70( 0.20) 38.79( 0.15) 31.39( 0.13)
2 50 19.18( 0.14) 4.27( 0.04) 0.00( 0.00) 0.00( 0.00)

This table is the summary data for scenario (b) - Thinning Markets in Figure 1 on Page 17. We compare
the number of fairness violations when there are many objects with small capacities to when there are few
objects with large capacities. In each scenario, there are 100 students. We vary the number of schools and
quota at each school, but in each scenario all schools have the same quota and the total number of available
seats is 100 (except when there are 7 and 3 schools where integer constraints result in the total market
capacity being 98 and 99, respectively). For each scenario, we ran 20,000 simulations.
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Table 3 - Varying School Capacity
Quota TTC C&T PTC PC&T
17 449.11( 0.48) 445.16( 0.48) 415.57( 0.45) 408.42( 0.45)
18 331.39( 0.41) 327.40( 0.40) 301.73( 0.36) 294.60( 0.36)
19 206.98( 0.34) 202.40( 0.33) 181.53( 0.28) 174.80( 0.28)
20 88.53( 0.29) 84.17( 0.28) 68.15( 0.23) 62.72( 0.22)
21 50.20( 0.24) 46.61( 0.22) 35.58( 0.18) 31.26( 0.17)
22 30.10( 0.19) 27.00( 0.17) 19.36( 0.13) 15.88( 0.12)
23 18.39( 0.15) 15.87( 0.13) 10.60( 0.10) 7.84( 0.08)

This table is the summary data for scenario (c) - Capacity Changes in Figure 1 on Page 17. In each
scenario, there were 100 students and 5 schools. The table shows the affect of varying the capacity of each
school. For each scenario, we ran 20,000 simulations.

Table 4 - Correlated Priorities
Alpha TTC C&T PTC PC&T
0.0 88.78( 0.30) 84.42( 0.28) 68.51( 0.24) 64.82( 0.23)
0.1 123.71( 0.37) 116.86( 0.35) 92.50( 0.29) 87.62( 0.28)
0.2 203.65( 0.44) 191.72( 0.42) 144.76( 0.35) 137.79( 0.35)
0.3 302.09( 0.51) 282.78( 0.49) 204.75( 0.43) 195.30( 0.43)
0.4 394.88( 0.59) 366.33( 0.59) 256.88( 0.51) 244.85( 0.52)
0.5 456.71( 0.71) 417.83( 0.72) 278.62( 0.59) 265.78( 0.61)
0.6 436.86( 0.82) 390.59( 0.83) 245.86( 0.61) 233.45( 0.62)

This table is the summary data for scenario (d) - Correlated Priorities in Figure 1 on Page 17. This table
shows the affect of correlated rankings. Specifically, for every student we specify one common ranking over
schools, and for each student we draw (uniformly) an individual ranking over schools. For a given scenario,
a students ranking over the schools is the convex combination of the two: α · individual+ (1− α) · common
where α varies from 0 to .6. For each scenario, we ran 20,000 simulations.
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