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Abstract 
 

The literature on kidney exchange considers situations where two or more patients 
needing transplants have live donors volunteering to donate one of their kidneys, but the 
donated organs are incompatible with the respective patients. The traditional analysis 
assumes that all components of the live donor exchange must occur simultaneously. 
People cannot write enforceable contracts that commit them to donate their organs; 
consequently, incentive compatibility is obtained by trading simultaneously. 
Unfortunately, a two-way exchange then requires the simultaneous availability of four 
operating rooms and associated personnel, while a three-way exchange requires six 
operating rooms, etc. The requirement of four or more operating rooms for concurrent 
surgeries may pose a significant constraint on the beneficial exchanges that may be 
attained.  The basic insight of this paper is that satisfaction of the incentive constraint 
does not require simultaneous exchange; rather, it requires that organ donation occurs no 
later than the associated organ receipt. Using sequential exchanges may relax the 
operating-room constraint and thereby increase the number of beneficial exchanges. We 
show that most benefits of sequential exchange can be accomplished with only two 
concurrent operating rooms. 
 
 
1. Introduction 
 
Kidney exchange provides a vivid illustration of the challenges and potential of market 
design.   The idiosyncratic constraints of the problem are not mere technicalities to be 
abstracted away, but rather lie at the very heart of the market design problem.  First and 
foremost, kidney exchange faces the constraint that a market, in the usual sense of the 
word, is illegal.  This creates the obvious problem that we may not buy or sell kidneys 
but instead must exchange one kidney for another.  However, it also creates a more subtle 
incentive constraint.  An agent cannot write a contract compelling another agent to donate 
her kidney if she has already received a kidney in kind.  As a result, the order in which 
kidneys are exchanged is crucial to the exchange being incentive compatible.  For this 
reason, exchanges have been performed simultaneously so that neither party has the 
incentive to renege on the agreement. 
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However, this creates an additional constraint that the market designer must overcome.  
Exchanges must take place in close proximity and there is a limit to the number of organ 
transplants that can be performed simultaneously in the same hospital.  We call this the 
hospital capacity constraint.  Even a two-way exchange involves four simultaneous 
surgeries.  Therefore, in most instances to date, kidney exchanges have been limited to 
two-way exchanges.   
 
Roth, Sonmez, and Unver (2007), hereafter RSU, discuss the challenges and potential 
gains from an efficiently designed kidney exchange market.2   They demonstrate that 
expanding the number of possible exchanges to include three-way as well as two-way 
exchanges would substantially increase the number of possible exchanges.  In fact, recent 
research by Ashlagi et al. (2012) indicates that there is a substantial efficiency loss from 
limiting exchanges to even three-way or four-way exchanges.  This is due to the fact that 
in practice there is a higher percentage of highly sensitized patient in an exchange pool 
than in the general patient population, and as a result, these patients are more difficult to 
match using only short cycles. 
 
One obvious approach for making three-way or higher exchanges feasible is to replace 
simultaneous operations with appropriately sequenced operations. A requirement of 
simultaneous trade is more stringent than necessary. Rather, incentive compatibility 
continues to be satisfied if, for every donor-patient pair, the donation occurs no later than 
the associated receipt of a kidney. 
 
In this paper, we exhibit theoretical environments where there are potential benefits to 
sequential kidney exchange and we take the insight to its logical conclusion. In particular, 
with a stationary population of agents, sequential kidney exchange allows us to achieve 
the maximal number of transplants while preserving incentive compatibility and yet 
never requiring more than two simultaneous operations. With a population consisting 
partly of recurring agent types and partly of unique agent types, sequential kidney 
exchange can be utilized to ease the hospital capacity constraint, both for recurring types 
and for unique types.  
 
In many ways, this is analogous to the classic treatment of retirement savings in 
Samuelson’s overlapping generations (OLG) model.  The basic problem of retirement 
savings is that each generation would like to produce goods in the first period of its life 
and to consume goods in the second period of its life.  However, the goods are perishable, 
so any generation cannot save directly for its own future.  The problem is resolved in the 
OLG model by having, in each period, the current working-age generation produce goods 
for the previous generation — with the expectation that, in their retirement, goods will be 
produced for them by the next generation.  This arrangement is incentive compatible on 
account that each generation is required to give up goods before receiving goods.  
Sequencing in the opposite direction would not be incentive compatible. 

                                                 
2 As an indicator of the magnitude of this problem, as of December 13, 2009, there were 81,678 patients on 
the cadaver kidney waiting list in the United States.  In 2008, 32,587 patients were added to the waiting list 
while 29,207 were removed.  Of the patients removed, 4,746 patients died and 1,600 were removed because 
they became too sick to receive a transplant. 
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Similarly, in the kidney exchange problem, it may not be feasible for each donor (of a set 
of donor-patient pairs) to give up a kidney and for each patient (of the same set of donor-
patient pairs) to receive a kidney simultaneously.  However, it may be feasible for each 
donor to give up a kidney in period t and for each of the associated patients to receive a 
kidney in period t+1, as fewer concurrent operations are required.  Effectively, each 
donor donates a kidney to the previous “generation” and each patient receives a kidney 
from the next “generation”.  Moreover, there is no incentive barrier to this sequencing, 
provided that each donor gives before — not after — the associated patient receives. 
 
We illustrate this with a simple example.  Figure 1 is a simple illustration with three 
agents.  Each agent consists of a patient needing a kidney and her incompatible donor.  
We represent each agent by the blood-type of the patient and the blood-type of the donor.  
See RSU for a detailed description of kidney compatibility, but a type-A (resp. B) patient 
is incompatible with a type-B (A) donor.  In this example, only two patients may be 
accommodated if we limit exchanges to two parties.  However, if we allow larger 
exchanges, then all three agents may receive a kidney.   
 

INSERT FIGURE 1 HERE 
 
Figure 2 illustrates the same example if we allow the agents to donate in different 
periods.  Now, the (A,B) agent gives to the (B,A) agent in one period and receives a 
kidney from next period’s (A,A) agent, etc.  We are able to achieve full efficiency, and 
yet we never require more than two concurrent operating rooms. 

 
INSERT FIGURE 2 HERE 

 
In our formal model, an identical population of people enters every period. The relevant 
notion of an agent is a pair comprising a kidney patient and an associated live donor. We 
initially focus on sequential exchanges in which the donor contributes her kidney exactly 
one period before the associated patient receives a kidney from another donor. In our first 
proposition, we show that when exchanges are done sequentially, we can match the same 
number of patients as with any simultaneous exchange in the static model. In our second 
proposition, we limit attention to stationary sequential exchanges and we show, 
conversely, that the number of patients matched cannot exceed the upper bound provided 
by the static model. The difference is that optimality in the static model may require n-
way exchanges (requiring 2n operating rooms), whereas the sequential exchanges never 
require using more than two operating rooms. 
 
Next, we consider the robustness of a sequential exchange to a non-stationary population.  
We demonstrate that to the extent that there is a subpopulation with isomorphic 
characteristics in each period then many of the same benefits may be realized as with a 
stationary population.  Specifically, a sequential exchange may easily be modified in each 
period to accommodate a dynamic population so long as the designer continues to include 
the isomorphic subpopulation.  The advantage is that any exchange to a member of the 
subpopulation may be implemented as a sequential exchange thereby relaxing the 
hospital capacity constraint. 
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We then consider “hybrid” exchanges in which transplants may occur both sequentially 
and simultaneously, and we consider longer waiting times than a single period.  Although 
sequential exchanges ease the hospital capacity constraint, it comes at the cost of making 
patients wait an extra period to receive a kidney.  A hybrid exchange serves as a 
compromise between these two tradeoffs.  Suppose for example that a hospital has the 
capacity for a two-way exchange but not a three-way exchange.  If the designer wishes to 
maximize the number of possible exchanges, subject to the capacity constraint, while 
minimizing the waiting time of each patient, then a hybrid exchange is superior to a 
sequential exchange.  Compare Figure 2 to Figure 3.  In the static exchange, at most two 
kidneys may be exchanged.  In the sequential exchange, three kidneys are exchanged, 
only two hospital rooms are used at any given time, but all patients must wait a period to 
receive their kidney.  In the hybrid exchange, three kidneys are exchanged, at most four 
hospital rooms are used at any given time, and only one patient must wait a period to 
receive her kidney.  Our next proposition demonstrates that this tradeoff holds in general. 
 

INSERT FIGURE 3 HERE 
 
Observe that hybrid exchanges can only improve the number of feasible exchanges 
relative to the traditional analysis, as simultaneous exchanges are a special case. At the 
same time, it could be misleading to compare the number of exchanges possible in 
sequential exchanges with longer waiting times versus the number possible with only 
simultaneous exchanges, as we have effectively multiplied the population being matched 
by a factor related to the waiting time. This can be formalized by considering k-replicated 
economies in which there are k agents of each type. It turns out that there is a natural 
relationship between hybrid matching in which agents may be required to wait up to 
2k − 1 periods and static matching in the k-replicated economy. In our fourth proposition, 
we show that, for any static exchange in a k-replicated economy, there exists a 
corresponding hybrid exchange in the unreplicated but repeated economy with waiting 
times of up to 2k − 1 periods, and in our fifth proposition, we establish the converse. 
 
The most closely related literature on kidney exchange concerns non-simultaneous, 
extended, altruistic-donor (NEAD) chains. In a NEAD chain, an altruistic donor initiates 
a sequence of “domino transplantations” (Montgomery et al (2006), Roth et al. (2006), 
Rees et al. (2009)). Within the sequence, exchanges may be done simultaneously or 
sequentially. The principal difference from the sequential and hybrid kidney exchanges 
explored in the current paper is that the sequencing goes in the exact opposite direction. 
A NEAD chain creates a “bridge donor”—an agent who is asked to donate after the 
associated receipt of a kidney. While the medical literature typically does not use the 
language of incentive compatibility, it is concerned about “reneging risk”. For example, 
in the American Journal of Transplantation, Gentry, Montgomery, Swihart and Segev 
(2009) write: “However, NEAD chains … run the risk of a bridge donor reneging, and 
add logistical complexity in that programs must maintain contact with bridge donors after 
a chain segment is completed.” Empirically, they report that a NEAD chain at the Johns 
Hopkins Hospital was broken when a bridge donor reneged, and they conclude: 
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A long wait between a donor’s intended recipient getting a transplant and 
the donor’s future nephrectomy could be a disadvantage if there is even a 
small chance that the donor will withdraw consent or become ineligible 
for health reasons. Additionally, it may be viewed as coercive to ask a 
donor’s consent for his own nephrectomy many months after his intended 
recipient has been transplanted, especially if the recipient has had a poor 
outcome. 

 
By way of contrast, there is no reneging risk in the sequential or hybrid kidney exchanges 
of our paper: an agent never receives a kidney before giving one. However, we retain the 
advantages of a NEAD chain.  As exchanges are non-simultaneous, they reduce the 
logistical barriers to a many-agent exchange and may increase the number of agents that 
are able to be matched.  For example, Rees et al. (2009) describes 10 kidney transplants 
initiated by a single altruistic donor.3 
 
This paper is structured as follows. In Section 2, we develop sequential kidney exchange 
in a stationary population. In Section 3, we show robustness of our conclusions with a 
non-stationary population. Section 4 explores efficiency in a replicated economy. In 
Section 5, we conclude. 
 
 
2. Efficiency in a stationary population 
 
We begin by describing the static kidney exchange problem. Our primitive is the graph G 
representing the agents and their compatibilities for transplants. The graph has N nodes, 
representing the N agents. Each agent  is a pair comprising a patient  and 
an associated donor . We denote the set of agents by .  Edges of the 
graph are directional. There is an edge connecting agent  to agent  if and only if 
donor  is compatible with patient ; more formally: 

  (1) 

Next, we describe the repeated version of the same problem. At every time , there is 
a set of agents .  Let  be the set of all agents.  Each 
agent  is a pair comprising a patient  and an associated donor . The 
compatibilities of donors  and patients  are exactly those induced by graph G: 

                                                 
3 An alternative approach to a NEAD chain is a “domino paired donation” (DPD).  A DPD is a chain of 
donations initiated by a non-directed donor.  All exchanges are performed simultaneously and the donor in 
the last pair donates to a candidate on the waiting list.  Ashlagi et al. (2010) run simulations using actual 
patient data from the Alliance for Paired Donation to compare the number of transplants that results from 
NEAD chains versus DPD.  In particular, they compare relative performance for a range of renege rates for 
each bridge donor in a NEAD change.  Even for relatively high renege rates, they find that NEAD chains 
outperform DPD when chains of length greater than four are allowed. 
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  (2) 

We denote the graph in the repeated model by .  We consider an infinitely repeated 
kidney exchange and compare the efficiency of exchanges that are constrained to be 
simultaneous with exchanges that may be across periods.   In the next section, we relax 
the assumption that the population is isomorphic in each period.    
 
If agent j is involved in an exchange, it must give a kidney to some agent i and receive a 
kidney from some agent k.  Therefore, .  For the static model, this 

implies that a kidney exchange is a disjoint union of cycles.  
 
Definition:  Given a population G, a cycle is a set of agents such that 
each agent appears only once, and   A static kidney 

exchange is the disjoint union of cycles in G.  
 
Remark:  A static kidney exchange  induces a function  in a natural way.  
For each cycle , define  for  and .  If an 
agent a is not part of any cycle in , define .  An agent a is said to be satisfied 
in a static kidney exchange if a receives a donated kidney, . 
 
As mentioned earlier, institutional constraints may limit the length of an allowable kidney 
exchange.  Therefore, define an n-way static kidney exchange to be the disjoint union of 
cycles of length no greater than n.  Our objective is to maximize the number of agents 
that receive a kidney subject to the incentive and capacity constraints. 
 
Definition: Given a static kidney exchange problem G, define  to be the 
maximum-cardinality n-way static kidney exchange of G.  Define  to be the 
maximum unbounded static kidney exchange.  Equivalently: 

. 

 
In the repeated model, initially we restrict our attention to the case where an agent in 
period t may only donate to an agent in period .  We consider more generalized 
exchanges in Section 4.  An agent may only receive a kidney if she has already donated a 
kidney, and a kidney exchange is a matching so that each agent who donates a kidney 
receives a kidney. 
 
Definition:  A sequential kidney exchange is a one-to-one function  such 
that for every : 
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The key advantage of a sequential kidney exchange is that the hospital capacity constraint 
is no longer binding.  In a static exchange, the smallest possible exchange, a two-way 
exchange, requires four hospital operating rooms.  In a sequential exchange, each 
exchange only requires two hospital rooms.  This is the best-case scenario as any non-
cadaver donation requires two operating rooms.  Note that the incentive constraint is still 
satisfied as each agent gives a kidney before she receives one.  
 
In a sequential kidney exchange, the exchanges no longer consist of disjoint cycles but 
instead are infinite chains.  Since there are no binding contracts, an agent must believe 
she will receive a kidney in the next period in order to be willing to donate a kidney in 
the current period.  An agent has a clone in each period.  If a previous period’s clone did 
not receive a kidney, she may be reasonably skeptical that donating a kidney in this 
period will result in her receiving a kidney in the next period.  However, if her clone has 
received a kidney in every previous (and infinitely many) periods, then she should be 
confident in the exchange.  As a result, we focus on exchanges where the same 
population receives a kidney in every period.  We call this a stationary exchange. 
 
First, we show that a sequential exchange does at least as well as the unbounded static 
kidney exchange. 
 
Proposition 1:   many agents may be matched in a stationary sequential kidney 
exchange while never requiring more than two operating rooms for any exchange. 
 
Proof:  Each static exchange corresponds to a stationary sequential exchange in a natural 
way.  Let  be any static exchange, and let S be the set of agents that exchange a 
kidney. .  Consider any  such that  and 

.  For every time t, define .  By construction, , so 
indeed every agent involved in the static match gives and receives a kidney.   Since every 
static kidney exchange corresponds to a sequential exchange, the maximal, unbounded, 
static, kidney exchange corresponds to a sequential exchange.   

Q.E.D. 
 
One might think that there is enough flexibility in a dynamic exchange to improve on the 
number of agents that are matched.  Unfortunately and rather interestingly, there is not.   
 
Proposition 2:  The maximum number of agents matched in any sequential, stationary 
exchange is . 
 
Proof:  Look at any sequential, stationary exchange f.  Fix any period t and let  be the 
set of agents that donate a kidney in period t.  Since f is stationary, .  Start with 
any  and let  be the agent  donates its kidney to.  In general, let  be 

the index such that .  Consider the sequence .  Since  
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is finite, the sequence must repeat an agent.  Let  be the first agent repeated.  If 

 where , then  
. 

This implies  which contradicts the minimality of m.  Therefore  

and  is a cycle in G.  Continue this process with any agent 

.  This produces a disjoint union of cycles that corresponds to a 
static kidney exchange in G.  Therefore,  by the definition of .  
Proposition 1 implies that the number of agents matched in a maximal sequential kidney 
exchange is at least . 

Q.E.D. 
 

 
3. Robustness to a non-stationary population 
 
In real populations, even though some donor-patient pairs are comparatively rare in that 
one cannot count on a qualitatively similar agent to enter the pool for a long time, some 
donor-patient pairs are undoubtedly very common. This immediately suggests that a 
market designer could utilize sequential exchanges for common agent types and 
simultaneous exchanges for rare agent types, easing the operating-room constraint. In this 
section, we show that the market designer can do better than this, by leveraging the 
existence of the more common types to facilitate the treatment of the rarer types. 

We model the non-stationary population by assuming that, in each period, there is a 
recurring subpopulation and a unique subpopulation. “Recurring” agents are donor-
patient pairs that occur sufficiently often that the designer can count on a similar pair to 
be present next month, allowing the agent’s participation to be sequential, as in Section 2. 
“Unique” agents cannot be relied upon to create sequential trades, but they can still 
benefit from sequentiality involving the recurring agents. 

Intuitively, a static cycle involving the overall population will often include both 
recurring types and unique types. Whenever the cycle passes through a recurring type, we 
can make the agent’s participation sequential, using the same device as in Section 2: the 
donor is taken to be in one cohort, while the recipient is taken to be in the next cohort. 
This eases the operating-room constraint, allowing for exchanges that could not otherwise 
occur. In this way, even unique agents, whose participation cannot be made sequential, 
benefit from the sequential participation of their trading partners. 

As before, our primitive is the graph  representing the agents and their compatibilities 
for transplants. An “agent” is a pair comprising a patient and a donor. At every time 

, a set of agents enters the population.  Each set  can be partitioned into a 
recurring population, , and a unique population, . We have  and 
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 for all .  Note that the population   is no longer restricted to have 
the same cardinality in each period.    Let  be the set of all agents.  The 
recurring population, , is isomorphic in each period.  Specifically, for each agent 

, and any time s, there exists an  such that  and are compatible with 
the same set of agents.  In particular, for any  and , if  donor is 
compatible with  patient, then  donor is also compatible with  patient.   

In this section we continue to restrict a sequential exchange so that an agent receives a 
kidney no more than one period after donating a kidney.  However, as the population 
varies each period, we will now allow a combination of simultaneous and sequential 
exchanges to occur. 

Definition:  A semi-sequential kidney exchange is a one-to-one function  
such that for every : 

 

 

Without loss of generality, we assume that, in every period t, there exists a static 
exchange of the agents in which every agent in  is satisfied (“satisfied” defined as in 
Section 2).4 We add two more definitions: 
 

Definition:   is a static exchange profile if each  is a static exchange on . 
 

Definition: Let  be the maximum-cardinality static kidney exchange on  subject to 
the constraint that all agents in are satisfied. 
 
In the next proposition, we show that a static exchange profile in which every agent in  
is satisfied in each period t may be converted into a semi-sequential exchange in which 
each agent in  participates sequentially.  This shows that we are able to achieve  
many exchanges in each period while reducing the number of simultaneous operations 
that are required.  Moreover, this is the reason why the recurring sub-population, , 
might be chosen to be less than maximal. If accommodating all the agents in imposes a 
significant constraint, then the social planner may improve efficiency by not including in 

the agents that are the most difficult to match. Note that omitting an agent from does 
not imply that the agent will not be matched; it just eliminates the constraint that the 
agent is satisfied in every period. 
 

                                                 
4 If Y cannot be satisfied in every period, then redefine Y to be a maximal subset that can be satisfied in 
every period.  For example, a static exchange consisting only of members in Y meets this criterion. 
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Figures 4 and 5 demonstrate how we may convert a variety of static exchanges into 
semi-sequential exchanges. If the static exchange has agent a giving to agent , 
then the semi-sequential exchange simply has agent a give to , the copy of  
that already donated a kidney in the (t-1)st period. 
 

INSERT FIGURES 4 AND 5 HERE 
  
Proposition 3:  Consider any static kidney exchange profile in which all agents in are 
satisfied every period. Then the same trades can be accomplished in a semi-sequential 
kidney exchange in which any trade involving an agent in requires only two 
simultaneous operating rooms. 
 
Proof:  Consider any static kidney exchange profile  such that in every period t, 
each agent  is satisfied.  Specifically, for every period t and every  there 
exists an agent  such that .  We define a semi-sequential exchange as 
follows.  Consider any agents  such that .  If , then set 

.  Otherwise, set .  This semi-sequential exchange modifies the 

static exchange profile in a natural way.  Each agent in  receives a kidney from an 
agent in period .  All other agents receive a kidney in the same period it donates.  
This exchange is valid as each agent in  is satisfied in every period.  As the exchanges 
involving agents in  are done sequentially, they require only two simultaneous 
operating rooms. 

Q.E.D. 
 
Remark: Proposition 3 should not be misinterpreted to assert that every static kidney 
exchange profile can be restated as a semi-sequential kidney exchange requiring only two 
operating rooms. The static kidney exchange at time t could, for example, contain a cycle 
of n agents, all from the set .  In that event, the corresponding semi-sequential 
exchange would still require 2n simultaneous operating rooms. However, to the extent 
that trades occur with agents in set , the operating-room constraint can be significantly 
relaxed. Specifically, if there are no more than m “consecutive” trades among members 
of , then 2m simultaneous operating rooms suffice. Figure 6(a) gives an example where 
the semi-sequential exchange does not reduce the operating constraint relative to a static 
exchange.  Figure 6(b) gives an example of a static exchange that requires a 6-cycle while 
the corresponding semi-sequential exchange requires only two simultaneous rooms.  The 
most beneficial case is one in which subset  is sufficiently large within the set  that 
all trades involve at least one agent from set . In that event, we have the following 
corollary. 
 

INSERT FIGURE 6 HERE 
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Corollary:  Consider any static kidney exchange profile in which all agents in are 
satisfied every period and such that each agent outside of  that receives a kidney 
donates to an agent in . Then the same trades can be accomplished in a semi-sequential 
kidney exchange profile with the following properties: 

• No more than two simultaneous operating rooms are required; and 
• No agent needs to wait more than one period. 

 
When choosing the population  to satisfy sequentially, the designer faces a trade-off.  
Each additional member of  reduces the number of simultaneous operating rooms 
required.  However, the population  potentially constrains the number of exchanges 
that may be achieved in a given period.  It should be noted that there are populations that 
may always be satisfied without imposing a constraint on the maximum number of 
matches.  For example, consider an agent a where both the donor and the patient have 
blood type A but the donor’s kidney is incompatible with the patient due to a positive 
crossmatch.   As long as there is some patient with blood type A that receives a kidney in 
the maximal exchange, then a will always be included.  For example, suppose  donates 
a kidney to  in an exchange and that ’s patient has blood type A.  Then if a where 
not included in the exchange, then we could increase the number of kidney’s donated by 
having  donate to a, a donate to , and otherwise leaving the exchange unchanged.  
 
 

 
 
4. Efficiency in a replicated economy. 
 
In this section, we examine a generalized sequential kidney exchange where the only 
restriction imposed is that an agent must give a kidney no later than when it receives a 
kidney.  In particular, this allows an agent to participate in a simultaneous exchange, a 
sequential exchange where she donates a kidney but waits multiple periods before 
receiving a kidney, or a hybrid of the two. We show that there is a natural relationship 
between donors waiting up to 2k − 1 periods to receive a kidney and a static population 
being replicated k times. 
 
Definition:  A general hybrid sequential kidney exchange is a one-to-one function 

 such that for every : 

 

 
In Section 2, we saw that a particularly simple form of sequential exchange, in which 
agents wait a single period between donating and receiving a kidney, relaxed the 
operating-room constraint.  However, the cost of the sequential exchange is that all 
agents must wait a period to receive their kidney.  Since we expect the hospital capacity 
constraint to be greater than 2, we first show how a hybrid exchange can be used to 
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satisfy the capacity constraint yet reduce the number of agents that must wait a period.  
Figure 7 is an example where an efficient exchange requires a 6-cycle, but the hospital 
capacity constraint only allows for a maximum of three simultaneous exchanges.  As the 
next proposition shows, this result is quite general.  
 

INSERT FIGURE 7 HERE 
 
 
Proposition 4:  For any α, a simultaneous exchange of length  can be converted to 
a hybrid exchange where no more than α  many simultaneous exchanges occur and at 

most  agents must wait a period to receive their kidney.  

 
Proof:  Figure 7 captures the intuition for the argument.  Consider any cycle of agents 

 in a simultaneous exchange.  Now consider the following assignment in the 
replicated economy: 

 

This exchange is well defined, no set of simultaneous exchanges involves more than  

many agents, and at most  agents must wait a period to receive their kidney. 

Q.E.D. 
 
 
A natural question to ask is whether any additional gains may be realized if we 
sometimes require agents to wait longer than a single period.  However, it would be 
misleading to compare the number of exchanges possible with such a sequential 
exchange to the exchanges possible with only simultaneous exchanges, as we have 
effectively multiplied the population being matched by a factor related to the waiting 
time.  In order to make a more reasonable comparison, we utilize the concept of a 
replicated economy and we compare the efficient number of matches in the generalized 
exchange with the efficient number of simultaneous matches in the replicated economy. 
 
Definition:  Given a graph G and its corresponding set of agents X, for any integer k, 
define the k-replicated economy  as follows.  The set of agents is 

.  Moreover,  if and only if 

. 
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We find a positive result.  The hybrid sequential exchange does at least as well as 
simultaneous exchange in a replicated economy.  Moreover, there is a natural relationship 
between a sequential exchange where agents may be required to wait 2k − 1 periods and a 
static matching in the k-replicated economy. 
 
Proposition 5:  Consider any static exchange in a k-replicated economy .  Then 
there exists a corresponding hybrid sequential exchange in , the unreplicated but 
repeated economy, where: 

1. The average number of trades in each period is ; and 

2. No agent waits more than 2k − 1 periods after giving a kidney to receive a kidney. 
 
We give a formal proof below, but the intuition is captured in the following figures.  
Suppose we have a static exchange in a k-replicated economy.  Figure 8 gives an example 
of a 3-way static exchange in a 3-replicated economy. 
 

INSERT FIGURE 8 HERE 
 
 
In the repeated economy, we have only one population each period.  However, k 
consecutive economies are isomorphic to a k-replicated economy. Therefore, for any 
period t, we associate agent  in the repeated economy with agent  in the k-
replicated economy. 
 

INSERT FIGURE 9 HERE 
 
Now way we can follow the same procedure as in Proposition 1 to transform a static 
exchange into a sequential exchange.  In this generalized procedure, k consecutive 
populations exchange with the k previous consecutive populations.  
 

INSERT FIGURE 10 HERE 
 
Proof:  Consider any k-replicated economy  and any maximal match .  Let 

 denote the set of agents that exchange kidneys.  Now consider the unreplicated 
but repeated economy.  For convenience, relabel each  as where: 

 

Define a hybrid sequential exchange as follows.  If , then let 

.  Let  otherwise.  Since  is a well defined exchange, f 
must be a well defined hybrid exchange.  By construction, the number of agents that 
exchange kidneys among periods {rk, rk +1, …, rk + k – 1} is equal to the number of 
agents that exchange kidneys in .  Therefore, the average number of kidneys matched 
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in any given period is .  Also, note that in this exchange, a donor gives to an 

agent at most  periods prior to her own period. 
Q.E.D. 

 
 
Section 2 considered exchanges where no two agents in the same period are matched.  
Here we consider both inter and intra-period exchanges.  We find that such exchanges, on 
average, do no better. 
 
Proposition 6:  Consider a steady state exchange in which an agent in period t may only 
donate to an agent in either period t or t − 1.  If  many agents are matched each period, 

then there exists a static exchange in a replicated economy where proportion  of the 

agents receive kidneys. 
 
Proof:  Look at any hybrid exchange f.  Let  denote the set of agents that 
receive a kidney in any period t.  As there are infinitely many periods and the cardinality 
of  is finite, by the pigeonhole principle there must exist two periods i and  
such that .  Now, consider the j-replicated economy  and define a 
static match as follows: 

 

This is a well-defined static exchange as f is well defined and .  
Q.E.D. 

 
 
5. Conclusion 
 
In this short paper, we have explored the implications of relaxing the simultaneous-
exchange constraint that has been imposed in all of the previous literature on kidney 
exchange. While there are evident incentive reasons to require the donor to give up her 
kidney no later than the associated patient receives his transplant, the need is less 
compelling for the two operations to occur at exactly the same time. If we permit 
sequential exchanges in which the donor gives up her kidney in one period and the 
designated recipient receives a donation in a later period, the constraint posed by a 
limited number of concurrent operating rooms is relaxed and a greater number of 
beneficial transplants is possible. 
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For a practical implementation of this market design innovation to be successful, the 
critical ingredient is to assure donors that this is not a “Ponzi scheme” and to give them 
confidence that their designated recipients will be served.5 There are three aspects to the 
needed confidence: 
 

• Confidence that a compatible donor for the designated recipient will enter the 
pool with high probability; 

• Confidence that this compatible donor will also be willing to participate in a 
sequential exchange; and 

• Confidence that this compatible donor will be matched with the designated 
recipient. 

 
With a stationary population, all three requirements may be easily achieved with a 
sequential exchange.  In reality, there is never a truly stationary population as both the 
size and the characteristics of the donor-patient pool change in each period.  Therefore, it 
is reasonable to dichotomize agents into two subpopulations:  agents who recur in each 
period with high probability; and agents who are comparatively rare.  With a semi-
sequential exchange, the agents that recur with a high enough probability may be 
accommodated sequentially while exchanges involving comparatively rare agents are 
done simultaneously.  
 
This also suggests how we can transition from a system of purely simultaneous 
exchanges to one utilizing both sequential and semi-sequential exchanges.  Initially, a 
very small group of agents Y could be processed sequentially where Y consists of the 
agent-types that are essentially guaranteed to reoccur in the next month.  Over time, Y 
can be expanded until the benefits from relaxing the hospital capacity constraint no 
longer exceeds the costs associated with including an agent whose type may not reoccur 
in the next period.   
 
The variance of the characteristics of the donor-patient pool in each period reduces the 
number of exchanges that may be handled sequentially.  This suggests another advantage 
of converting regional exchange programs into a national exchange program.  Several 
papers have quantified the increase in the number of simultaneous exchanges that are 
possible when the population being matched is expanded (see Toulis and Parkes, 2010, 
and Ashlagi et al. 2012).  A separate advantage is that a large, national exchange program 
reduces the variability of the population in each period. 
 
It is unreasonable to assume that agents will only participate in an exchange program if 
they are guaranteed to receive a kidney.  After all, even in a simultaneous exchange, 
agents are never guaranteed a successful transplant.  Similarly, agents will participate in a 
sequential exchange so long as the probability they receive a kidney is high enough that 

                                                 
5 A Ponzi scheme is an investment fraud that involves the payment of purported returns 
to existing investors from funds contributed by new investors. 
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the expected benefit from a successful transplant outweighs the cost associated with 
donation.   
  
All of these confidence issues will be easier to satisfy as a greater flow of donor-patient 
pairs enter the kidney exchange and as a longer history of trades develops. As this occurs, 
and as a historical database becomes available, it will be possible to provide donors with 
reliable, individualized information such as: “With 93% probability, a live donor 
compatible with your designated recipient will be offered within one month.” Effective 
fallback options can also be developed: for example, if no compatible donor emerges 
within one month, the patient can be offered the option of jumping to the front of the 
cadaver queue.6 Finally, people should have no concerns that the next generation of 
donor-patient pairs will decline to participate (the usual downfall of Ponzi schemes and 
asset bubbles) as, unfortunately, the population in need of kidney transplants will not be 
declining any time soon. 
 
Sequential kidney exchanges come at some cost; while more beneficial trades occur than 
with simultaneous exchanges, they occur with some amount of added delay. If the added 
delays are felt to be excessive, policymakers would do best to increase the number of 
concurrent operating rooms. Our analysis includes consideration of hybrid exchanges 
(where some exchanges occur simultaneously, and some occur sequentially) and, as the 
operating-room constraint is eased, it is evident that the optimal solution among hybrid 
exchanges would exhibit a shift away from sequential exchanges and toward 
simultaneous exchanges. Still, at any reasonable cost of delay, it seems likely that a social 
planner would want some fraction of the exchanges to be sequential rather than 
simultaneous. 
 
At the same time, the reader should recognize that “delay” is not necessarily costly in this 
context. When the donor and her designated recipient are members of the same 
household, it may be extremely onerous for both to be recovering from surgery at exactly 
the same time. For members of the same household, a little sequentiality may be viewed 
as a good thing. 
 
Sequential kidney exchange holds some promise as an improvement upon the current 
solution to the market design problem. It does not violate incentive compatibility; nor 
does it violate the legal constraint against payment of valuable consideration (other than 
in-kind directed donations) for organ transplants. In short, for kidney exchanges, it may 
be better first to give and then to receive; rather than always to give and receive 
simultaneously. 
 
 
 

                                                 
6 The cadaver queue is the list of patients waiting to receive a cadaver kidney.  See Roth 
et al. (2006) for a detailed description of how a system of paired exchanges might interact 
with the cadaver queue. 



 17 

References 
 
Ashlagi, I., Gilchrist, D. S., Roth, A. E., and Rees, M. A. (2010) “Nonsimultaneous 

Chains and Dominos in Kidney Paired Donation – Revisited,” working paper. 

Ashlagi, I., Gamarnik, D., Rees, M.A., and Roth, A.E. (2012) “The Need for (long) 
Chains in Kidney Exchange,” working paper. 

Montgomery, R.A., Gentry, S. E., Marks, W. H., et al. (2006) “Domino Paired Kidney 
Donation: A Strategy to Make Best Use of Live Non-Directed Donation,” Lancet 
368: 419-421. 

Rees et al. (2009), “A Non-simultaneous Extended Altruistic Donor Chain,” New 
England Journal of Medicine, 360;11, March 12, 2009, 1096-1101. 

Roth et al.  (2006), “Utilizing List Exchange and Undirected Donation through “Chain” 
Paired Kidney Donations,” American Journal of Transplantation, 6, 11, November 
2006, 2694-2705. 

Roth, A. E., Sonmez, T., and Unver, U. (2004) “Kidney Exchange,” Quarterly Journal of 
Economics 119(2):  457-488. 

Roth, A. E., Sonmez, T., and Unver, U. (2005a) “Pairwise Kidney Exchange,” Journal of 
Economic Theory 125: 151-188. 

Roth, A. E, Sonmez, T., and Unver, U. (2005b) “A Kidney Exchange Clearinghouse in 
New England,” American Economic Review Paper and Proceedings 95(2):  376-380. 

Roth, A. E., Sonmez, T., and Unver, U. (2007) “Efficient Kidney Exchange: Coincidence 
of Wants in Markets with Compatibility-Based Preferences,” American Economic 
Review 97(3): 828-851. 

Toulis, P. and Parkes, D.C. (2011) “A Random Graph Model of Kidney Exchanges:  
Optimality and Incentives,”  Proc of the 11th ACM Conference on Electronic 
Commerce:  232-332. 

 



 18 

Figures 
 

 
 
Figure 1 – Each node represents a donor-patient pair. An A-blood-type patient is 
incompatible with a B-blood-type donor, but compatible with an A-blood-type donor. 
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Figure 2 – The incentive and hospital capacity constraints are satisfied if agents donate a 
kidney before they receive a kidney. 
 
 

 

 



 20 

Figure 3 – A hybrid exchange. All possible exchanges can occur while using at most four 
concurrent operating rooms and requiring only one patient each period to wait to receive 
a kidney.  

 
 
 
 
 

 
Figure 4 – The populations used in Figure 5. 
 

 
Figure 5 –This example demonstrates how the populations from Figure 4 can be 
incorporated into a hybrid exchange.  Instead of donating to a member of  in the same 
period, the agent donates to the corresponding member of  from one period earlier. 
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Figures 6(a) and 6(b) – In these two figures, circles represent members of  while 
squares represent members of .  The cycle on the left is requires 10 simultaneous 
operating rooms in both the static and hybrid exchanges.  The cycle on the right requires 
12 simultaneous rooms in a static exchange but only two simultaneous rooms in a hybrid 
exchange. 

 
 
 

 
 
Figure 7 – Suppose the six-cycle of the left panel is required to attain full efficiency, 
but the hospital capacity constraint allows only three simultaneous transplants. The 
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hybrid exchange of the right panel attains full efficiency while requiring fewer agents to 
wait than a sequential exchange. 
 
 

 
 
Figure 8 – A three-way exchange in a 3-replicated economy. 
 

 

 
 
Figure 9 – A 3-replicated economy is isomorphic to three consecutive periods in the 
repeated economy. 
 

 

 
 
Figure 10 – The same three-way exchange in the static economy recreated as a hybrid 
exchange in the repeated economy. 
 

 


