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Abstract

For procuring from sellers with decreasing returns, there are known

efficient dynamic auction formats. In this paper, we design an efficient

dynamic procurement auction for the case where goods are homoge-

neous and bidders have increasing returns. Our motivating example
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is the procurement of vaccines, which often exhibit large fixed costs

and small constant marginal costs. The auctioneer names a price and

bidders report the interval of quantities that they are willing to sell at

that price. The process repeats with lower prices, until the efficient

outcome is discovered. We demonstrate an equilibrium that is efficient

and generates VCG prices.
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The auction literature provides us with a number of prescriptions for ef-

fective auction design. First, truthful revelation of information is fostered

by making bidders’ payments as independent as possible of their own bids.

Second, when bidders’ values are interdependent, the auction should utilize a

dynamic structure that permits the revelation of value information during the

auction. Third, at the same time, the auction process should avoid request-

ing or disclosing information that is unnecessary for determining the outcome.

Fourth, bidder participation and desirable outcomes are facilitated by simple,

transparent and fast auction designs.

For selling a single item, the English auction adheres to all of these design

principles. For more general settings, these prescriptions point us toward dy-

namic auctions that iteratively converge to the Vickrey-Clarke-Groves (VCG)

outcome.1 Dynamic implementations of the VCG mechanism in environments

of various complexity have received and continue to receive a great deal of

attention in the literature (see Demange et al. (1986), Gul and Stacchetti

(2000), Parkes and Ungar (2000), Ausubel and Milgrom (2002), Bikhchandani

and Ostroy (2002 and 2006), Ausubel (2004 and 2006), de Vries et al. (2007),

Mishra and Parkes (2007), and Lamy (2012)).

For general private-values environments, Mishra and Parkes (2007) con-

struct a class of ascending-price combinatorial auctions that terminate at the

VCG outcome. These auctions are quite complex, implying that the auction-

eer has to sacrifice a number of desirable properties of the English auction in

order to implement the VCG outcome in general settings. However, simpler

auction designs are known for more restrictive settings. For example, Demange

et al. (1986) develop a dynamic Vickrey auction for the unit-demand case, and

Ausubel (2004) does the same for environments with homogeneous items and

nonincreasing marginal values.

In our paper, we study procurement settings with homogeneous goods. For

the case of convex cost functions, a descending clock auction with “clinching”2

1See Vickrey (1961), Clarke (1971) and Groves (1973).
2A reverse version of the ascending clock auction with “clinching” from Ausubel (2004).
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is a simple dynamic auction that implements the VCG outcome. However,

many important procurement markets exhibit economies of scale and produc-

tion limits, resulting in concave cost functions with capacity constraints. For

such settings, we provide a relatively simple dynamic auction that implements

the VCG outcome.

Our motivating example for studying this setting is the procurement of

vaccines. The largest buyer of vaccines worldwide is an international organi-

zation called Global Alliance for Vaccines and Immunisation (GAVI), which

was launched in 2000 with the mission to increase access to immunization in

poor countries. As of this writing in 2016, GAVI is assisting 73 low-income

countries in obtaining vaccines, resulting in half a billion additional children

being vaccinated to date. As the largest buyer, GAVI shapes the world vaccine

market by ensuring persistent demand that attracts new suppliers and reduces

immunization costs. UNICEF, which serves as a procurement agent for GAVI,

is responsible for procuring billions of doses of vaccines annually.3

Manufacturing vaccines is a highly specialized industry with large barriers

to entry. New entry into the vaccine market may require making significant

investments in R&D, performing clinical trials, obtaining regulatory approvals

and building production facilities. A new vaccine typically takes about 10

years to bring to market and costs in excess of $1 billion. The production line

for a vaccine is capable of producing the raw vaccine for a fixed number of

doses; in addition, marginal costs are associated with the fill/finish process.

Furthermore, suppliers cannot adjust their production in response to sudden

demand changes. Production lines of a multi-vaccine supplier are not fungi-

ble in the sense that the production facility for one vaccine cannot be easily

be converted to produce a different vaccine. As a result, it would typically

take years for a manufacturer to expand its capacity and to get the required

regulatory approvals.

The global vaccine market is dominated by a handful of large multinational

3For an overview of UNICEF vaccine procurement, see

http://www.unicef.org/supply/index vaccines.html.
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firms, with smaller vaccine manufacturers from developing countries recently

beginning to play a larger role. The fixed capital expenditures associated with

R&D, clinical trials, regulatory approvals and plant equipment constitute a

significant proportion of the total production costs and are largely independent

of the number of doses that is ultimately produced. In particular, the average

cost of producing a vaccine is decreasing up to a predetermined maximum

capacity. Typically, UNICEF’s demand for a particular vaccine is so large

that it cannot be fulfilled by a single supplier. Moreover, due to concerns

about supply security and future procurements, UNICEF appears to prefer to

have multiple suppliers for a given vaccine even if the short-run procurement

costs would be lower with fewer suppliers.4 Given all available information, it

seems appropriate for us to model the cost structure of a vaccine manufacturer

as consisting of a large fixed cost and a small constant marginal cost, up to

a predetermined capacity limit. In this paper, we will treat the more general

setting of a concave cost function, again up to a predetermined capacity.

In a typical descending clock procurement auction, the auctioneer quotes

a unit price and asks each bidder for its supply (i.e., its optimal quantity)

at that price. With convex cost functions, bidders would gradually decrease

their desired supply in response to the descending price, converging to efficient

market clearing. However, when bidders have concave cost functions and the

auctioneer quotes a unit price, it is optimal for the bidder either to produce at

its capacity limit or to produce nothing, and it is never optimal for the bidder to

produce any intermediate quantity. But, then, the standard descending clock

format can only discover one point on the cost curve—the cost associated with

producing at maximum capacity—so the auctioneer never learns the costs of

other quantities as the price goes down.

Consider an example with three suppliers, each characterized by a cost

function with a fixed cost, a constant marginal cost, and a capacity. The

auctioneer wants to procure a total quantity of 4 of the good, and each supplier

4Supply security considerations are not explicitly considered in this paper.
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can produce no more than 3. The cost functions of suppliers are c1(q) = 25+q,

c2(q) = 27 + q, and c3(q) = 24 + 3q. Due to concavity, the cost-minimizing

assignment is a 3 - 1 split of the award between two suppliers, e.g., one supplier

would produce a quantity of 3 and another supplier would produce a quantity

of 1. Hence, to identify the optimal split, the auctioneer needs to collect costs

for producing 1 and 3 from each supplier.

Suppose that all suppliers bid truthfully. In a standard descending clock

auction, a truthful bidder would offer 3 units (its capacity) until the bidder

drops out. Therefore, the auctioneer would learn the suppliers’ costs for pro-

ducing q = 3, but not for q = 1. Specifically, a standard descending auction

would terminate at a price of 10 (when the aggregate supply falls below de-

mand) with the award for q = 1 being unassigned (see the last column of Table

1). Furthermore, at this point, there is no good way for the auctioneer either

to assign the q = 1 award or to determine the corresponding payment. Also,

with the auction terminated at price 10, it has not been proven that supplier

1 should be assigned 3 rather than 1 (the auction only proved that supplier 1

should not be assigned zero). To summarize, standard auction designs based

upon eliciting one-point supplies are, in general, ill-suited to determining op-

timal assignments in this setting.

We propose a new bidding procedure. Given the current price, instead

of asking which quantity a bidder prefers to supply, the auctioneer requests

all quantities that the bidder is willing to supply. With decreasing average

costs, the minimum quantity that a bidder is willing to supply should gradually

increase with the decreasing clock price (while the maximum quantity always

remains at the capacity, until even that becomes unprofitable). Then the

auctioneer can ask for a contiguous interval of quantities that would be

profitable for the bidder to supply at a given price.

In our example, given a unit price of p(t) and assuming truthful bidding,

supplier i would be willing to supply any quantity q such that p(t) q ≥ ci(q).

For example, when the price is 26, supplier 1 is willing to supply any quantity

q ∈ [1, 3]; and supplier 1’s bidding interval reduces to [2.5, 3] when the clock
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price drops to 11. The detailed auction dynamics for this example is presented

in Table 1.

Suppose that the auctioneer initializes the auction at p(t0) = 30. Due to

the interval bidding approach, the auctioneer learns the costs of each supplier

for producing q = 1 by the time that the price drops to 26. By the time that

the price drops to 10, the auctioneer knows that the optimal assignment is

either (1, 3, 0) or (3, 0, 1): the current total cost of (1, 3, 0) is 56 and the

current total cost of (3, 0, 1) is 57. Hence, the auctioneer needs to see whether

supplier 1 is willing to produce q = 3 for 29, which would reduce the total cost

of (3, 0, 1) to 56. By allowing the price to drop a little further, to 92
3
, the

auctioneer confirms that the assignment (3, 0, 1) is efficient.

The auctioneer uses the cost information generated by the interval bidding

approach to reconstruct the suppliers’ cost functions. In general, the auc-

tioneer would stop the auction before all cost information is revealed, since

the efficient assignment and corresponding payments can be found using on-

ly partial cost information (due to the concavity assumption). The efficient

assignment and supplier payments are calculated by solving the standard win-

ner determination problems using the partially-reconstructed cost functions as

inputs.

The proposed auction design has a number of desirable properties. The

auction uses linear and anonymous prices to elicit costs — making it simple,

intuitive and fast. At each price, bidders reveal cost information about quan-

tities that are no longer profitable. If the auctioneer discloses this information

to bidders, the format can potentially yield a great deal of useful price discov-

ery, reducing bidders’ cost uncertainties (if costs are interdependent). At the

same time, winning bidders in general do not reveal their costs for the award-

ed quantities. Therefore, the format strikes a balance between price discovery

and privacy preservation. Finally, if the auctioneer uses the VCG outcome,

then a fully efficient assignment is supported as an equilibrium.

Our analysis is strongly influenced by the general dynamic implementa-

tion of the VCG mechanism from Mishra and Parkes (2007) and the follow-up
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Table 1: Example with Fixed Costs and Constant Marginal Costs

Supplier 1 Supplier 2 Supplier 3

Total Costs: c1 = 25 + q c2 = 27 + q c3 = 24 + 3q

Minimum Profitable
q1(t) = 25

p(t)−1 q2(t) = 27
p(t)−1 q3(t) = 24

p(t)−3Quantity given p(t):

Price p(t)
Bidding Intervals Standard

(new approach) Agg. Supply

p(t0) = 30 s1 =
[
25
29 , 3

]
s2 =

[
27
29 , 3

]
s3 =

[
24
27 , 3

]
9

p(t1) = 28 s1 =
[
25
27 , 3

]
s2 = [1, 3] s3 =

[
24
25 , 3

]
9

p(t2) = 27 s1 =
[
25
26 , 3

]
s2 =

[
1 1
26 , 3

]
s3 = [1, 3] 9

p(t3) = 26 s1 = [1, 3] s2 =
[
1 2
25 , 3

]
s3 =

[
1 1
23 , 3

]
9

... ... ... ... ...

p(t4) = 11 s1 =
[
2 1
2 , 3
]

s2 =
[
2 7
10 , 3

]
s3 = [] 6

p(t5) = 10 s1 =
[
2 7
9 , 3
]

s2 = [] s3 = [] 3

p(t6) = 92
3 s1 =

[
2 23
26 , 3

]
s2 = [] s3 = [] (N/A)

analysis in Lamy (2012). However, we do not explicitly use the concept of

universal competitive equilibrium (UCE) price. For our setting, finding a UCE

price vector is equivalent to partially reconstructing the cost functions of the

suppliers such that the VCG outcome can be found. Other related papers

are Mishra and Parkes (2009) and Mishra and Veeramani (2007), who devel-

op Vickrey-Dutch auctions and compare their privacy preservation properties

with their standard “English-like” counterparts.

The paper is organized as follows. Section 1 provides a model of the envi-

ronment, and Section 2 formally describes the auction procedure with interval

bidding. The main results are established in Section 3. Several implementa-
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tion issues are discussed in Section 4. Section 5 presents a detailed example

that illustrates the main elements of the new bidding procedure. Section 6

concludes. Most of the proofs are relegated to the Appendix.

1 Model

An auctioneer wishes to procure D units of an indivisible homogeneous

product from a set of suppliers N = {1, 2, ..., n}. Supplier i can produce any

quantity from the set Si = {0, 1, ..., s̄i} where s̄i is the maximum production

capacity of supplier i. Production possibilities of supplier i are fully char-

acterized by a cost function ci(q), q ∈ Si. A supplier’s cost for producing

zero units is zero, ci(0) = 0. We assume that all suppliers in N have in-

creasing cost functions with non-increasing marginal costs (e.g. concave), i.e.,

ci(q)− ci(q − 1) ≥ ci(q + 1)− ci(q) for all q ∈ {1, ..., s̄i − 1} and for all i ∈ N .

Supplier i realizes a net payoff pi − ci(qi) when she receives a payment pi in

exchange for supplying qi units of the good.

An economy that includes only suppliers from set M ⊆ N is denoted as

E(M). Let N−i = N\{i} denote the set of all suppliers in N excluding supplier

i. The main economy is E(N) and the marginal economy for supplier i is

E(N−i).

It is assumed that the auctioneer has an alternative source to procure any

quantity of the good at a per unit cost of c̄.5 This assumption ensures that

the auctioneer can always procure D units of the good in any economy E(M)

even if the total maximum capacity of suppliers in M is not sufficient to meet

the full demand, i.e., when
∑

M s̄i < D. For purely expositional purposes, we

assume that ci(q) ≤ c̄ q for all q ∈ Si and all i ∈ N .6

An assignment q = (q1, ..., qn) is feasible for the economy E(M) if qi ∈ Si

5This assumption is eqivalent to having a reserve price of c̄ – the maximum price the

auctioneer is willing to pay per unit of the good.
6If ci(q) > c̄ q for some q of supplier i, this cost information is irrelvant for the auctioneer

since it can not be a part of an efficient assignment in any economy.
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for all i ∈ M , qi = 0 for all i /∈ M and
∑

M qi ≤ D. Denote Q(M) a set

of feasible assignments for E(M). Assignment q is efficient for the economy

E(M) if it is a feasible assignment that minimizes the total cost of procuring

D units of the good:

TC(M) = min
q∈Q(M)

[∑
M

ci(qi) + c̄ (D −
∑
M

qi)

]
(1.1)

Proposition 1 shows that efficient assignments in this environment tend to

be asymmetric, allocating either their maximum capacity or zero to majority

of suppliers.

Proposition 1. If all ci(.) are concave, there exists an efficient assignment q

for E(M) such that at most one supplier i ∈M is assigned a positive quantity

that is strictly less than its capacity, i.e., 0 < qi < s̄i.

The Vickrey outcome is an assignment vector q = (q1, ..., qn) and a payment

vector pV = (pV1 , ..., p
V
n ) such that q is an efficient assignment for the E(N)

and pVi = ci(qi) + [TC(N−i)− TC(N)].

A core outcome is an assignment vector q = (q1, ..., qn) and a payment

vector pC = (pC1 , ..., p
C
n ) such that q is an efficient assignment for the E(N)

and pC belongs to the set of core payments CP :

CP =

{
p ∈ Rn :

∑
N\M

ci(qi) ≤
∑
N\M

pi ≤ TC(M)−
∑
M

ci(qi) ∀M ⊆ N

}
(1.2)

A supplier optimal core outcome is a core outcome in which the sum of pay-

ments to suppliers,
∑

N pi, is maximized. Denote SOCP a set of supplier

optimal core payments.

We say that bidders are substitutes (BAS) if

TC(N/M)− TC(N) ≥
∑
i∈M

[
TC(N/i)− TC(N)

]
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for allM ⊆ N . BAS is a well-known condition in the literature under which the

set of supplier optimal payments SOCP coincides with the Vickrey payment

pV .7

2 Auction Procedure with Interval Bidding

Our auction procedure utilizes a standard descending clock price initialized

at p(0) = c̄. Let p(t) denote a continuous descending price path on [0, T ]

where T is the termination time at which one of the auction closing conditions

(specified later) is met.

The auctioneer has several ways to elicit cost information from bidders

using the interval bidding approach. The most natural one is to ask suppliers

to name all possible production levels that they would be willing to provide in

exchange for a per unit payment p(t). Then supplier i who at time t excluded

a previously acceptable quantity q from its report has just revealed its cost for

q to be p(t) q. We refer to this approach as average cost elicitation.

For the average cost elicitation, supplier i is said to bid according to a cost

function c(.) on set S if the set of acceptable quantities si(t) = {q ∈ S : c(q) <

p(t) q} at every time t ∈ [0, T ]; and supplier i is said to bid truthfully if she

bids according to its true concave cost function ci(.) on its true feasible set Si.

For this section, we are going to assume that all suppliers bid truthfully.

Lemma 1. If supplier i bids truthfully according to its concave cost function

ci(.), then for all t, t′ ∈ [0, T ]:

(a) si(t) is a contiguous set

(b) si(t
′) ⊆ si(t) for all t′ > t

(c) If si(t) is nonempty, then s̄i ∈ si(t)
7See Bikhchandani and Ostroy (2002).
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Proof. Concavity of ci(.) implies non-increasing average costs. Given the de-

scending clock price trajectory p(t), a supplier who is bidding according to

a concave cost function would submit an interval that includes all quantities

from its feasible set that are above some threshold level, trivially implying all

properties above.

Reconstructing Cost Functions

The auctioneer infers the maximum capacity of supplier i, s̄i, by noting her

highest acceptable quantity at t = 0. Let qi(t) denote the highest unacceptable

quantity of supplier i at time t. For any q ≤ qi(t), denote ti(q) = {max t′ ∈
[0, t) : q ∈ si(t

′)} the last time supplier i included quantity q in its bidding

interval and c̃i(q) = p(ti(q)) q is the associated revealed cost for q. The

revealed cost for producing zero units is set to zero, c̃i(0) = 0.

At time t, the revealed marginal cost for the qi(t) unit is mc−i (t) =

c̃i(qi(t)) − c̃i(qi(t) − 1); and revealed marginal cost for the lowest acceptable

unit, qi(t)+1, is mc+i (t) = p(t) [qi(t)+1]− c̃(qi(t)). Denote the lowest revealed

marginal cost for supplier i at time t as mci(t) = min{mc+i (t),mc−i (t)}.
The auctioneer constructs the current approximation of the cost function

for supplier i as follows:

ĉi(q, t) =

 c̃i(q) q ≤ qi(t)

c̃i(qi(t)) +mci(t) [q − qi(t)] qi(t) < q ≤ s̄i
(2.1)

The approximation error for supplier i for quantity q at time t is given by

δi(q, t) = ĉi(q, t)− ci(q). (2.2)

Lemma 2. If supplier i bids truthfully according to its concave cost function

ci(.), then for all q, q′ ∈ Si and all t, t′ ∈ [0, T ]:

(a) ĉi(q, t) ≥ ci(q) for all q ∈ Si and ĉi(q, t) = ci(q) for all q ≤ qi(t)

(b) ĉi(q, t) is increasing and concave in q and weakly decreasing in t
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(c) δi(q, t) is weakly increasing in q

(d) for t′ > t and q′ > q

δi(q, t)− δi(q, t′) ≤ δi(q
′, t)− δi(q′, t′)

According to Lemma 2, ĉi(q, t) is a well-behaved approximation of ci(q). It

weakly converges towards ci(q) from above and maintains the concave shape

at all times. Also both the approximation error δi(q, t) and the reduction in

the approximation error over time are monotonic functions of quantity.

Closing Rule and Auction Outcome

Given the current clock price p(t), supplier i exits the auction when it

is no longer profitable to supply its maximum capacity s̄i. A supplier who

wishes to exit submits an empty bidding interval si(t) = {∅} which implies

that qi(t) = s̄i. Denote A(M, t) = {i ∈M : qi(t) < s̄i} a set of active suppliers

from set M ⊆ N who are still willing to supply their maximum capacity at

time t, and denote I(M, t) a complimentary set of inactive suppliers from set

M .

Utilizing current estimates of the cost functions ĉi(q, t) for all i ∈ M ,

the auctioneer can find a tentative assignment for economy E(M) denoted as

q̂(M, t) = (q̂1(M, t), ..., q̂n(M, t)) by minimizing the total cost of procurement:

T̂C(M, t) = min
q∈Q(M)

[∑
M

ĉi(qi, t) + c̄ (D −
∑
M

qi)

]
(2.3)

In case there are several assignments that minimize (2.3), the auctioneer selects

an assignment that also minimizes
∑

A(M,t) [s̄i − qi] (maximize the number of

lots assigned to active suppliers).

An aggregate supply is usually defined as a sum of quantities desired by

suppliers at a given price. In our setting, the desired quantity of each supplier

is either its maximum capacity or zero, resulting in a very lumpy aggregate
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supply that in general does not provide enough information to make the deci-

sion about closing the auction. Instead, we introduce an alternative definition

of the aggregate supply that is suitable for this setting. Let AS(M, t) to be the

aggregate supply for economy E(M) at time t calculated as a sum of (1) max-

imum capacities of active suppliers in A(M, t);8 (2) the tentative assignments

for inactive suppliers in I(M, t) and (3) any lots procured at the alternative

source:

AS(M, t) =
∑

A(M,t)

s̄i +
∑
I(M,t)

q̂i(M, t) +

[
D −

∑
M

q̂i(M, t)

]
(2.4)

The rationale for the aggregate supply defined in (2.4) is as follows. Aggre-

gate supply at p(t) should reflect the current level of competition between all

suppliers. In a setting with concave cost functions, sometimes an inactive sup-

plier creates competition for active suppliers due to a better fit. Hence, the

aggregate supply should account for such competition; and the second term in

(2.4) reflects competition from inactive suppliers. Lemma 3 below summarizes

several properties of the newly defined aggregate supply AS(M, t).

Lemma 3. If all suppliers bid truthfully according to their concave cost func-

tions, then for any M ⊆ N and for all t ∈ [0, T ]:

(a) AS(M, t) = D +
∑

A(M,t)

[
s̄i − q̂i(M, t)

]
(b) AS(M, t) ≥ D

(c) If AS(M, t) = D, then AS(M, t′) = D for all t′ ≥ t

(d) If
∑

A(M,t) s̄i = D, then AS(M, t) = D

According to Lemma 3, aggregate supply for economy E(M) equals de-

mand, AS(M, t) = D, when all actively bidding suppliers in A(M, t) have

8This term is the usual aggregate supply since all active bidders desire their maximum

capacity at p(t).
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been assigned their maximum capacities in the tentative assignment q̂(M, t).

We say that economy E(M) is cleared at t if its aggregate supply AS(M, t)

equals demand D.

The traditional Walrasian notion of market clearing might also apply here

– by property (d), if at any time t, the maximum supply of active suppliers in

A(M, t) equals demand D, then AS(M, t) = D and economy E(M) is cleared.

However, the existence of Walrasian clearing price is not guaranteed in the

environment with concave cost functions.

The setting permits bidder complementarities which can result in AS(M, t)

being nonmonotonic in t.9 However, by property (c), once an economy E(M)

is cleared (AS(M, t) = D), it stays cleared until the end of the auction. In

Proposition 2, we establish an intuitive result that clearing an economy is

equivalent to finding an efficient assignment for this economy.

Proposition 2. If all suppliers bid truthfully according to their concave cost

functions and economy E(M) clears at time t, the tentative assignment q̂(M, t)

is an efficient assignment for E(M) and

T̂C(M, t) = TC(M) +
∑
M

δi(q̂i(M, t), t) (2.5)

Aggregate supply A(M, t) can also be nonmonotonic in M , so the main

economy E(N) might clear before some of its marginal economies.10 In order to

recover the Vickrey outcome for E(N), the auctioneer must continue to collect

information about cost functions until the main economy and all marginal

economies clear:11

Closing Rule 1: The auctioneer stops the clock price (T := t) once all

economies in the set {E(N), E(N−1), ..., E(N−n)} have cleared. Supplier

9An example of nonmonotonic aggregate supply is included with the proof for Lemma 3.
10For the example in Section 5, AS(N, t4) = 6 and AS(N−4, t4) = 8.
11In general, once the main economy is cleared, the auctioneer needs additional cost

information only from a subset of active bidders. It is possible to modify our auction

procedure to minimize unnecessary cost elicitation.
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i is awarded qi = q̂i(N, T ) and receives a payment pi = ĉi(qi, T ) +

[T̂C(N−i, T )− T̂C(N, T )].

A detailed example illustrating the mechanics of the auction with interval

bidding is provided in Section 5.

3 Main Results

Theorem 1. If all suppliers bid truthfully according to their concave cost func-

tions, the interval bidding auction procedure with Closing Rule 1 implements

the Vickrey outcome.

Proof. By Proposition 2, qi = q̂i(N, T ) is an efficient assignment for E(N).

For payments,

pi = ĉi(qi, T ) + [T̂C(N−i, T )− T̂C(N, T )]

= ĉi(qi, T ) + [TC(N−i)− TC(N)]− δi(qi, T )

= ci(qi) + [TC(N−i)− TC(N)] = pVi

So far we have been assuming that all suppliers bid truthfully. When

the Vickrey outcome is implemented through a direct revelation mechanism,

it is weakly dominant for suppliers to report their true costs. A dynamic

implementation of the Vickrey outcome, such as ours, should preserve good

incentives for suppliers provided they are sufficiently constrained in their action

space at each stage of the dynamic game – a requirement that each supplier

bids according to some increasing concave cost function. This requirement can

be enforced by constraining bidders with appropriate activity rules.

Proposition 3. Supplier i bids according to an increasing concave cost func-

tion if and only if its bidding interval si(t) = {
¯
si(t), ..., s̄i(t)} is constrained by

the activity rules AR1-AR3:

AR1:
¯
si(t) is weakly increasing in t and s̄i(t) = s̄i(0) for all t such that

si(t) 6= {∅}
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AR2: Supplier i is not allowed to increase its
¯
si(t) when mc+i (t) >

mc−i (t)12

AR3: Supplier i becomes inactive (si(t) = {∅}) at time t if p(t)
¯
si(t) =

c̃(qi(t))

Proposition 3 provides a complete characterization of bidding in accordance

with an increasing concave function at all times. Therefore, AR1-AR3 together

form the strictest set of activity rules that always permit truthful bidding

in our setting. Intuitively, AR1 ensures that supplier i bids according to a

cost function with nonincreasing average costs, and AR2 ensures that this

cost function is concave. AR3 ensures that the underlying cost function is

nondecreasing. Additionally, AR3 ensures that supplier i will be inactive by

the time p(t) = 0, so the auction cannot run indefinitely.

The truthful bidding assumption used in Lemmas 1 - 3 is made solely for

expositional convenience. All lemmas (with appropriate changes to notation)

stay true and the interval bidding auction procedure is well-defined as long as

all suppliers bid according to some concave cost functions, i.e., when their bid-

ding is constrained by AR1-AR3. However, the truthful bidding assumption

is necessary for Proposition 2 and Theorem 1. The next theorem provides a

game-theoretic justification for this assumption. The standard solution con-

cept in the literature on dynamic implementations of the VCG mechanism is

ex post perfect equilibrium.13

Theorem 2. If all suppliers have concave cost functions and their bidding is

constrained by activity rules AR1-AR3, then truthful bidding is incentive com-

patible; and truthful bidding by all suppliers is an ex post perfect equilibrium.

12If supplier i wants to increase its
¯
si(t) by more than one unit at p(t),

¯
si(t) is increased

in one-unit increments provided that AR2 stays satisfied after each increase (since both

mc+i (t) and mc−i (t) are updated after each increase in
¯
si(t)).

13See Gul and Stacchetti (2000), Ausubel(2004 and 2006), Bikhchandani and Ostroy

(2006), de Vries et all. (2007), Mishra and Parkes (2007).
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Proof. Suppose that all suppliers in N−i are bidding truthfully. By Proposi-

tion 3, any deviation by supplier i from its true cost function ci(.) is equivalent

to truthful bidding according to some other concave cost function c′i(.). By

Theorem 1, the outcome of the interval bidding auction in such case would cor-

respond to an outcome of the VCG mechanism when submitted costs functions

are {c′(.), c−i(.)}. But the VCG mechanism is strategy-proof, and supplier i’s

best response is to bid truthfully according to ci(.) at every stage of the auc-

tion.

Continuing the clock auction after the main economy has cleared can po-

tentially run into some problems in applications. If bidders are aware that the

efficient allocation has been identified and cannot be altered, their incentives

can be compromised.14 Next, we study the properties of an auction procedure

with interval bidding that stops collecting information once the main economy

is cleared.

Suppose that the main economy clears at time t. By Proposition 2, the

efficient allocation q = q̂(N, t) has been established provided all bidders were

bidding truthfully. Define approximations of the Vickrey payment vector and

the set of core payments at time t′ ≥ t as

p̂Vi (t′) = ĉi(qi, t
′) + [T̂C(N−i, t

′)− T̂C(N, t′)] (3.1)

and

ĈP (t′) =

{
p ∈ Rn :

∑
N\M

ĉi(qi, t
′) ≤

∑
N\M

pi ≤ T̂C(M, t′)−
∑
M

ĉi(qi, t
′) ∀M ⊆ N

}
(3.2)

Theorem 3. Suppose that all suppliers bid truthfully according to their con-

cave cost functions. If the main economy E(N) clears at time t, then for all

t′ ≥ t:

14Bidders can deviate from thruthful bidding in order to decrease payments made by the

auctioneer to their competitors – a real concern for vaccine procurement.
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(a) p̂V (t′) ≤ pV

(b) ĈP (t′) ⊆ CP

Theorem 3 shows that stopping the auction when the main economy is

cleared is a viable alternative – when using current cost approximations to

determine payments (Vickrey or core), the auctioneer would never end up

overcompensating suppliers.

Closing Rule 2: The auctioneer stops the clock price (T := t) once the

main economy has cleared. Supplier i is awarded its tentative allocation

for the main economy qi = q̂i(N, T ) and receives a payment pi such that

the payment vector p belongs to ĈP (T ).15

However, with Closing Rule 2, the auctioneer risks paying too little to

suppliers, potentially compromising their incentives for truthful revelation of

their costs. This is in contrast to Lamy (2012) who proved that the dynamic

procedure developed by Mishra and Parkes (2007) for general preferences,

terminated when the main economy is cleared, generates enough information

to find at least one bidder-optimal core outcome. The key difference of the

interval bidding approach that is responsible for this limitation is the way in

which approximations of values/costs are constructed.16 Proposition 4 shows

that in general, the interval bidding procedure with Closing Rule 2 cannot

identify a supplier optimal core outcome.

15In general, such payment vector is not uniquely defined. The auctioneer would need to

specify a rule that selects one set of payments consistent with the constraints. For example,

the auctioneer might select a payment vector that maximizes the sum of payments made to

suppliers.
16The approximation of the cost function ĉ(., t) utilized by the interval bidding procedure

is not semi-truthful. In dynamic combinatorial auction literature, semi-truthful approxima-

tions are very common. Stated using our terms, an approximation of the cost function ĉ(., t)

is semi-truthful if ĉ(q, t) = min{c̄ q, c(q) + α(t)} for all q ∈ Si and all t ∈ [0, T ].
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Proposition 4. The interval bidding auction procedure with Closing Rule 2

can not yield a supplier optimal core outcome for all possible concave cost

functions of suppliers in N .

Proof. Without loss of generality, we construct an example with costs functions

satisfying the BAS condition (bidders are substitutes). Consider an example

with D = 4 and three suppliers provided in Table 2. Since cost functions

satisfy BAS, the Vickrey payment vector is also the unique element of SOCP.

The main economy clears at t1 when the clock price equals 16. It can be

verified that cost estimates at t1 also satisfy BAS. However, current Vickrey

payments for both Supplier 1 and 2 equal to 36 which is lower than their true

Vickrey payments of 38. Thus, the true supplier optimal core payments cannot

be identified without continuing the auction.

Table 2: Example for Proposition 4

Supplier 1 Supplier 2 Supplier 3

Costs: c1 = (20, 30) c2 = (20, 30) c3 = (28, 42, 48)

Efficient Assignment: 2 2 0

Vickrey Payments: 38 38 0

p(0) = 30 s1 = {1, 2} s2 = {1, 2} s3 = {1, 2, 3}
ĉ1 = (30, 60) ĉ2 = (30, 60) ĉ3 = (30, 60, 90)

p(t1) = 16 s1 = {2} s2 = {2} s3 = {}
ĉ1 = (20, 32) ĉ2 = (20, 32) ĉ3 = (28, 42, 48)

Notes: c1 = (20, 30) indicates that supplier 1 can produce 1 or 2 units of the good

at a cost of 20 and 30 correspondingly.
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4 Implementing the Interval Bidding Auction

Privacy Preservation

Dynamic auctions are favored over sealed-bid ones for several reasons. One

of them is “privacy preservation” – the ability to determine an optimal outcome

while relying only on partial information about suppliers’ costs. The notion of

privacy preservation is trivial for a single-item English procurement auction: a

winner only reveals that its cost is somewhat lower than the lowest cost among

its rivals. For multiple items, the meaning of privacy preservation is unclear –

which part of its cost function would a winner like to keep private?

Under the interval bidding procedure, suppliers start to reveal their cost

functions from low quantities towards the high quantities. Then, if the auction

stops without fully revealing the cost function of a given supplier, this supplier

wins its maximum quantity while revealing its costs only for low quantities.

Hence, the interval bidding approach preserves private cost information for

quantities closest to suppliers’ winnings.

The interval bidding procedure can be sometimes excessive in terms of

revealing cost information: winners can end up revealing more information

than is necessary to establish their winnings.17 This is a result of using a

simple elicitation process based on anonymous and linear price path. It is

possible to reduce the excess elicitation of unrelated information via simple

changes to the design that would allow stopping the auction for one set of

suppliers and continuing it for others.

Activity Rules

Activity rules AR1-AR3 from Proposition 3 are needed to ensure that all

suppliers bid according to acceptable cost functions. AR2 can be counter

intuitive: as clock price descends, a supplier can be precluded from chang-

17The interval bidding procedure violates the minimality property advocated in Lamy

(2012) for dynamic auctions.
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ing its bidding interval until the clock price catches up with the current cost

approximation of its cost function. This is a natural consequence of using aver-

age cost elicitation to reconstruct a cost function with nonincreasing marginal

costs. Average costs are higher than marginal costs for concave cost functions;

therefore, average costs are revealed at a higher clock price.18

One can consider using marginal cost elicitation instead of average cost

elicitation to relax the need for AR2. Under marginal cost elicitation, supplier

i reduces its bidding interval when the marginal cost of its current lowest

acceptable alternative equals to the current clock price, i.e., when ci(qi(t) +

1)− ci(qi(t)) = p(t).

The marginal approach is sufficiently similar to the average approach that

the majority of the results in the paper continue to hold.19 However, relying

on marginal elicitation in the environment with nonicreasing marginal costs is

ill-founded. The marginal approach works very well when the marginal costs

should be “equalized” across different winners at the efficient assignment, e.g.,

when cost functions are convex. But there is no value in trying to equalize

marginal costs across suppliers when the efficient assignment does not satisfy

this property (see Proposition 1). In comparison, the average cost elicitation

identifies suppliers who can produce their maximum capacities at the lowest

average costs which is the relevant information for finding an efficient assign-

ment.

Information Policy

It is common in dynamic auctions to provide bidders with a current aggre-

gate measure of competition. If needed, the auctioneer can report aggregate

18Consider a supplier with a cost function c(1) = 10, c(2) = 14. Under the average

approach, the supllier would completely reveal its true cost function when p(t) = 7. Under

the marginal approach, the supllier would completely reveal its true cost function only when

p(t) = 4.
19For example, property (d) in Lemma 3 does not hold for marginal approach since it

is not guaranteed that an active supplier from A(N, t) would want to supply its maximum

capacity at the current price.
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supply AS(M, t), as defined in (2.4), to suppliers so they can track the progress

of the auction.

When utilizing Closing Rule 2, the public reporting of AS(N, t) does not

cause any concerns. In contrast, when utilizing Closing Rule 1, public report-

ing of AS(N, t) can be problematic since AS(M, t) can me nonmonotonic in

M . If some marginal economies have not cleared by the time AS(N, t) = D,

suppliers will immediately realize that their future bids have no effect on their

payoffs, compromising their incentives. A reasonable alternative in this case

is to report the maximum aggregate supply across the main economy and all

marginal economies, i.e., max{AS(N, t), AS(N−1, t), ..., AS(N−n, t)}, instead

of AS(N, t).

Nonmonotonicity of AS(M, t) in t can be somewhat inconvenient as well,

but it is not critical for the informational purposes. Increases in AS(M, t) just

indicate current bidder complementaries between active and inactive suppliers.

Dynamic Vickrey Pricing

Another advantage of dynamic auctions over the sealed-bid alternatives is

their ability to provide up-to-date information about prospective winnings and

the level of payments for each bidder.

For the auction with interval bidding, a natural feedback would be to report

suppliers’ tentative assignments and payments that are calculated using the

current approximations of the cost functions. This approach works for inactive

suppliers, but they are no longer bidding in the auction. At the same time,

active suppliers might be frustrated since not all of them can be assigned

their maximum capacities at the same time unless the main economy has been

cleared.

A less confusing approach would be to report payments for s̄i for each

active supplier in A(N, t). Using the current cost functions, for each active

supplier i, the auctioneer solves for (1) T̂C(N−i, t); and (2) T̂C(N, t) with an

extra constraint qi = s̄i. A tentative payment for s̄i for supplier i is then given

by ĉi(s̄i, t) + [T̂C(N−i, t)− T̂C(N, t)]. Note that it is possible that the current
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tentative payment for s̄i is less than the current reported costs ĉi(s̄i, t). This

can happen when q̂i(N, t) < s̄i.

Caution should be used when providing current payment information since

it reveals additional information to suppliers.

5 An Illustration of the Auction with Interval

Bidding

We illustrate our auction procedure using an example with four suppliers.

Two suppliers, 1 and 2, can produce up to 3 units each, and suppliers 3 and 4

can produce up to 2 units each. The auctioneer wishes to buy 6 units of the

good. Cost information and auction dynamics for this example are provided

in Table 3. For completeness, we also report aggregate supply AS(N, t) and

tentative Vickrey prices (see Information Policy and Dynamic Vickrey Pricing

in Section 4).

The auctioneer starts a descending price clock at 50. The current clock

price is interpreted as a per unit payment for supplying the good. At each

price, suppliers reply with quantities they are willing to supply at the current

clock price. In our example, when the clock price is above 40, all four suppliers

are willing to supply any feasible quantity. However, at price of 40, it is not

profitable for Supplier 2 to supply 1 unit of the good, but it is still profitable

to supply 2 or 3 units. Supplier 2 communicates this information by reducing

its bidding interval from s2 = {1, 2, 3} to s2 = {2, 3} at p(t1) = 40. The

auctioneer keeps track of all reductions in bidding intervals as the clock price

decreases, and uses them to dynamically reconstruct suppliers’ cost functions

ĉ.

There are several interesting moments in this example. The first one oc-

curs at t3 when the clock price reaches 20. At this price, both Supplier 2

and Supplier 4 become inactive, driving the usual aggregate supply (a sum of

quantities that suppliers want to deliver at the current price) below the de-
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mand. However, the efficient assignment cannot be established at this point.

Observe that assignment (3, 0, 2, 1), the one where still active suppliers 1

and 3 receive their maximum capacities, results in a total cost of 125. At the

same time, assignment (3, 0, 1, 2) can be procured at a cost of 120 resulting

in AS(N, t3) = 7. Hence, the auctioneer has to continue the auction to find

out whether Supplier 3 should be awarded 2 units. At t4, when the clock

price reaches 17.5, AS(N, t4) = 6 and the optimality of assignment (3, 0, 2,

1) is proven. However, AS(N−4, t4) = 8, so the auction should be continued

until E(N−4) is cleared. When the clock price reaches 15, Supplier 3 becomes

inactive leading to the clearing of E(N−4) at t5. The auctioneers solves for the

Vickrey outcome using the reconstructed cost functions, awarding (3, 0, 2, 1)

in exchange for payments (60, 0, 35, 30).

6 Conclusion

We have introduced an efficient procurement auction for environments with

homogeneous goods where suppliers have nonincreasing marginal costs and ca-

pacity constraints. Potential applications include procurement settings where

the underlying production process exhibits increasing returns, such as the man-

ufacturing of vaccines. The auction design is based on a novel interval bidding

approach: each supplier is asked to report all quantities that she is willing to

supply at the current price, not just her optimal supply. Due to nonincreasing

marginal costs, the supplier’s report always constitutes a contiguous interval

of acceptable quantities. The new bidding procedure allows the auctioneer to

collect cost information via a linear and anonymous price clock, resulting in

a fast and simple auction. The auction terminates with the Vickrey outcome,

ensuring that truthful bidding by all suppliers constitutes an ex post Nash

equilibrium. Moreover, privacy is preserved in the sense that the winners are

not required to reveal the costs of producing their winning quantities.

Our interval bidding approach can be adapted to other settings. By the
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usual arguments, this approach can equally be used to sell homogeneous items

to buyers with nondecreasing marginal values. In this setting, all results of

the paper hold with obvious changes to the notation. Additionally, the inter-

val bidding approach can be a useful building block in constructing efficient

auctions for other settings of practical relevance. One such setting is the pro-

curement of homogeneous goods from suppliers with U-shaped average cost

curves (e.g., fixed costs and convex variable costs)—one of the most common

cost structures assumed in economics.
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Appendix

PROOF OF PROPOSITION 1:

Suppose that q = (q1, ..., qn) is efficient for E(M) and there are two suppliers,

i and j, such that 0 < qi < s̄i and 0 < qj < s̄j. Then, following from efficiency

of q (inequalities 1 and 3) and concavity of ci(.) and cj(.) (inequalities 2 and

4), we have

ci(qi + 1)− ci(qi) ≥ cj(qj)− cj(qj − 1)

≥ cj(qj + 1)− cj(qj)
≥ ci(qi)− ci(qi − 1)

≥ ci(qi + 1)− ci(qi)

Therefore, taking one lot from supplier i and giving it to supplier j is also

an efficient assignment for E(M). Proposition 1 follows from iterating this

argument.

PROOF OF LEMMA 2:

(a): For q ≤ qi(t), ĉi(q, t) = ci(q) by construction. For a concave ci(.) and

any q ∈ Si,

ci(q) ≤ ci(qi(t)) + [ci(qi(t) + 1)− ci(qi(t))](q − qi(t))
≤ c̃i(qi(t)) + [p(t)(qi(t) + 1)− c̃i(qi(t))](q − qi(t))
= c̃i(qi(t)) +mc+i (t)(q − qi(t))

and

ci(q) ≤ ci(qi(t)) + [ci(qi(t))− ci(qi(t)− 1)](q − qi(t))
= c̃i(qi(t)) + [c̃i(qi(t))− c̃i(qi(t)− 1)](q − qi(t))
= c̃i(qi(t)) +mc−i (t)(q − qi(t))

But then ci(q) ≤ c̃i(qi(t)) +mci(t)(q − qi(t)) = ĉi(q, t) for any q > qi(t).

(b): Monotonicity follows by construction. To show that ĉi(q, t)− ĉi(q−1, t) ≥
ĉi(q + 1, t) − ĉi(q, t), note that for any q + 1 ≤ qi(t), ĉi(q, t) = ci(q) and ci(q)
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is concave. For any q − 1 ≥ qi(t), ĉi(q, t) is linear in q. For q = qi(t),

ĉi(q, t)− ĉi(q − 1, t) = mc−i (t) ≥ mci(t) = ĉi(q + 1, t)− ĉi(q, t).

For t′ > t and q ≤ qi(t
′), ĉi(q, t

′)− ĉi(q, t) = ci(q)− ĉi(q, t) ≤ 0. For t′ > t and

q > qi(t
′),

ĉi(q, t
′)− ĉi(q, t) = ci(qi(t

′))− ci(qi(t)) +mci(t
′)[q − qi(t′)]−mci(t)[q − qi(t)]

≤ mci(t)[qi(t
′)− qi(t)] +mci(t

′)[q − qi(t′)]−mci(t)[q − qi(t)]
= [mci(t

′)−mci(t)][q − qi(t′)]
≤ 0

(c): For any q ≤ qi(t), δi(q, t) = 0. For q > qi(t),

δi(q + 1, t)− δi(q, t) = mci(t)− [ci(q + 1)− ci(q)]
≥ [ci(qi(t) + 1)− ci(qi(t))]− [ci(q + 1)− ci(q)]
≥ 0

(d): For any q ∈ Si and any t, t′ ∈ [0, T ] such that t′ > t, δi(q, t)− δi(q, t′) ≥ 0.

Then for any q ≤ qi(t), δi(q, t) = 0 and δi(q, t
′) = 0, and inequality (d) follows.

For q > qi(t),

δi(q
′, t)−δi(q, t) = mci(t)(q

′−q) and δi(q
′, t′)−δi(q, t′) ≤ mci(t

′)(q′−q)

Then
δi(q

′, t′)− δi(q, t′) ≤ mci(t
′)(q′ − q)

≤ mci(t)(q
′ − q)

= δi(q
′, t)− δi(q, t)

and inequality (d) follows. It is equivalent to ĉi(q, t) − ĉi(q, t′) ≤ ĉi(q
′, t) −

ĉi(q
′, t′)

PROOF OF LEMMA 3:

(a): by a trivial rearrangement of terms in (2.4). (b) follows from (a).
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(c): If
∑

M s̄i ≤ D, then AS(M, t) = D for all t ∈ [0, T ]. If
∑

M s̄i > D, then

the auctioneer would never use the alternative source for procurement. Let

q = q̂(M, t) and q′ = q̂(M, t′) where t′ ≥ t. Since AS(M, t) = D, then qi = s̄i

for all i ∈ A(M, t).

0 ≤
∑
M

ĉi(q
′
i, t)−

∑
M

ĉi(qi, t)

=
∑

A(M,t)

[ĉi(q
′
i, t)− ĉi(s̄i, t)] +

∑
I(M,t)

[ĉi(q
′
i, t)− ĉi(qi, t)]

≤
∑

A(M,t)

[ĉi(q
′
i, t
′)− ĉi(s̄i, t′)] +

∑
I(M,t)

[ĉi(q
′
i, t
′)− ĉi(qi, t′)]

=
∑
M

ĉi(q
′
i, t
′)−

∑
M

ĉi(qi, t
′)

The second inequality follows from 1) property (d) of Lemma 2 for suppliers

in A(M, t); and 2) no cost updating between t and t′ for bidders in I(M, t).

The inequality shows that q = q̂(M, t) also solves cost minimization problem

at t′, but then AS(M, t′) = D. A possibility of nonmonotonic AS(M, t) in t is

demonstrated in Table 4.

(d): Note that if
∑

A(M,t) s̄i = D, then by optimality q̂i(N, t) = s̄i for all i ∈
A(M, t) and q̂i(N, t) = 0 for all i ∈ I(M, t). Then AS(M, t) = D by (a).

PROOF OF PROPOSITION 2:

Suppose that q̂ = q̂(M, t) is not efficient, and there exists an efficient assign-

ment q′ such that∑
M

ci(q
′) + c̄ [D −

∑
M

q′i] <
∑
M

ci(q̂) + c̄ [D −
∑
M

q̂i]

Note that q̂i = s̄i for all i ∈ A(M, t). Then by Lemma 2, δi(q
′
i, t) ≤ δi(q̂i, t) for
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all i ∈ A(M, t). But then

T̂C(M, t) =
∑

M ĉi(q̂i, t) + c̄ [D −
∑

M q̂i]

=
∑

M ci(q̂i, t) +
∑

A(M,t)

δi(q̂i, t) + c̄ [D −
∑

M q̂i]

>
∑

M ci(q
′
i, t) +

∑
A(M,t)

δi(q
′
i, t) + c̄ [D −

∑
M q′i]

=
∑

M ĉi(q
′
i, t) + c̄ [D −

∑
M q′i]

which is a contradiction to q̂ solving the cost minimization problem (2.3) at

time t.

Given that q̂(M, t) is efficient

T̂C(M, t) =
∑

M ĉi(q̂, t) + c̄ [D −
∑

M q̂i]

=
∑

M ci(q̂, t) +
∑
M

δi(q̂i, t) + c̄ [D −
∑

M q̂i]

= TC(M) +
∑
M

δi(q̂i, t)

PROOF OF PROPOSITION 3:

AR1: Weakly increasing
¯
si(t) results in a weakly increasing ti(q) for q ≤ qi(t).

The implied average cost function for q ≤ qi(t) is c̃i(q)/q = p(ti(q)). Then,

given decreasing p(t), the implied average cost function is weakly decreasing

in q. For the converse, AR1 is satisfied by Lemma 1.

AR2: If supplier i increases its
¯
si(t) by 1 unit at t, then c̃i(qi(t)) = p(t)qi(t).

If mc+i (t) ≤ mc−i (t) before the increase in
¯
si(t), then c̃i(qi(t))− c̃i(qi(t)− 1) ≤

c̃i(qi(t) − 1) − c̃i(qi(t) − 2) and the implied cost function c̃(.) is concave. For

the converse, AR2 is trivially satisfied.

AR3: If p(t)
¯
si(t) = c̃i(qi(t)) at t, then mci(t) = 0. But then the only weakly

increasing cost function consistent with the bidding of supplier i is c̃i(q) =

p(ti(q))q for all q ≤ qi(t) and c̃i(q) = c̃i(qi(t)) for all q > qi(t). For the

converse, AR3 is trivially satisfied.
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PROOF OF THEOREM 3:

(a): See the proof for part (b). Part (a) follows from part (b) by substituting

M = N−i.

(b): Since E(N) clears at t, q = q̂(N, t) is the efficient allocation by Proposition

2. Suppose that economy E(M) clears at t′ ≥ t, then for all s ≥ t′

T̂C(M, s)−
∑
M

ĉi(qi, s) =

= TC(M) +
∑
M

[ĉi(q̂i(M, s), s)− ci(q̂i(M, s))]−
∑
M

ĉi(qi, s)

= TC(M) +
∑

A(M,s)

[ĉi(qi, s)− ci(qi)]−
∑

A(M,s)

ĉi(qi, s)−
∑

I(M,s)

ci(qi)

= TC(M)−
∑
M

ci(qi)

where the second equality holds since qi = q̂i(M, s) = s̄i for all i ∈ A(M, s),

and ĉi(q̂i(M, s), s) = ci(q̂i(M, s)) for all i ∈ I(M, s).

Then it is sufficient to demonstrate that T̂C(M, s)−
∑

M ĉi(qi, s) is weakly

increasing in s on [t, t′]. Since T̂C(M, s)−
∑

M ĉi(qi, s) is a continuous function

of s, we only need to consider s′ > s from [t, t′] such that q̂i(M, s) = q̂i(M, s′)

for all i ∈ N .

T̂C(M, s)− T̂C(M, s′) =
∑
M

[ĉi(q̂i(M, s), s)− ĉi(q̂i(M, s′), s′)]

=
∑

A(M,s)

[ĉi(q̂i(M, s), s)− ĉi(q̂i(M, s′), s′)]

≤
∑

A(M,s)

[ĉi(s̄i, s)− ĉi(s̄i, s′)] (by Lemma 1(d))

=
∑

A(M,s)

[ĉi(qi, s)− ĉi(qi, s′)] +
∑

I(M,s)

[ĉi(qi, s)− ĉi(qi, s′)]

=
∑
M

ĉi(qi, s)−
∑
M

ĉi(qi, s
′)

This implies that the upper bound on core payments in ĈP (N, t) is weak-

ly increasing in t. At the same time, for any t′ ≥ t and any M ⊆ N ,
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∑
N\M ĉi(qi, t

′) ≤
∑

N\M ĉi(qi, t) by Lemma 2(b). This implies that the lower

bound on core payments in ĈP (N, t) is weakly decreasing in t.
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Table 3: Illustrative Example for Auction with Interval Bidding (D = 6)

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Costs: c1 = (20, 30, 35) c2 = (40, 50, 60) c3 = (20, 30) c4 = (25, 40)

Efficient

Assignment: 3 0 2 1

Vickrey

Payments: 60 0 35 30

Clock

Price p(t) Bidding Intervals / Cost Approximations AS(N, t)

p(0) = 50 s1 = {1, 2, 3} s2 = {1, 2, 3} s3 = {1, 2} s4 = {1, 2} 10

ĉ1 = (50, 100, 150) ĉ2 = (50, 100, 150) ĉ3 = (50, 100) ĉ4 = (50, 100)

p̂V1 (3) = 150 p̂V2 (3) = 150 p̂V3 (2) = 100 p̂V4 (2) = 100

p(t1) = 40 s1 = {1, 2, 3} s2 = {2, 3} s3 = {1, 2} s4 = {1, 2} 10

ĉ1 = (40, 80, 120) ĉ2 = (40, 80, 120) ĉ3 = (40, 80) ĉ4 = (40, 80)

p̂V1 (3) = 120 p̂V2 (3) = 120 p̂V3 (2) = 80 p̂V4 (2) = 80

p(t2) = 25 s1 = {1, 2, 3} s2 = {3} s3 = {1, 2} s4 = {2} 10

ĉ1 = (25, 50, 75) ĉ2 = (40, 50, 60) ĉ3 = (25, 50) ĉ4 = (25, 50)

p̂V1 (3) = 75 p̂V2 (3) = 75 p̂V3 (2) = 50 p̂V4 (2) = 50

p(t3) = 20 s1 = {2, 3} s2 = {∅} s3 = {2} s4 = {∅} 7

ĉ1 = (20, 40, 60) ĉ2 = (40, 50, 60) ĉ3 = (20, 40) ĉ4 = (25, 40)

p̂V1 (3) = 60 p̂V2 (0) = 0 p̂V3 (2) = 35 p̂V4 (2) = 40

p(t4) = 17.5 s1 = {2, 3} s2 = {∅} s3 = {2} s4 = {∅} 6

(for ĉ1 = (20, 35, 50) ĉ2 = (40, 50, 60) ĉ3 = (20, 35) ĉ4 = (25, 40)

optimality) p̂V1 (3) = 60 p̂V2 (0) = 0 p̂V3 (2) = 35 p̂V4 (1) = 25

p(t5) = 15 s1 = {3} s2 = {∅} s3 = {∅} s4 = {∅} 6

(for Vickrey ĉ1 = (20, 30, 40) ĉ2 = (40, 50, 60) ĉ3 = (20, 30) ĉ4 = (25, 40)

payments) p̂V1 (3) = 60 p̂V2 (0) = 0 p̂V3 (2) = 35 p̂V4 (1) = 30

Notes: c1 = (20, 30, 35) indicates that supplier 1 can produce 1, 2 or 3 units of the good

at a cost of 20, 30, or 35 correspondingly. 33



Table 4: Example of nonmotonic AS(N,t)

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Costs: c1 = (12, 20, 21) c2 = (12, 20, 21) c3 = (11) c4 = (7)

Price p(t) AS(N,t)

p(0) = 15 s1 = {1, 2, 3} s2 = {1, 2, 3} s3 = {1} s4 = {1} 8

ĉ1 = (15, 30, 45) ĉ2 = (15, 30, 45) ĉ3 = (15) ĉ4 = (15)

p(t1) = 12 s1 = {2, 3} s2 = {2, 3} s3 = {1} s4 = {1} 8

ĉ1 = (12, 24, 36) ĉ2 = (12, 24, 36) ĉ3 = (12) ĉ4 = (12)

p(t2) = 11 s1 = {2, 3} s2 = {2, 3} s3 = {} s4 = {1} 7

ĉ1 = (12, 22, 32) ĉ2 = (12, 22, 32) ĉ3 = (11) ĉ4 = (11)

p(t3) = 10 s1 = {3} s2 = {3} s3 = {} s4 = {1} 7

ĉ1 = (12, 20, 28) ĉ2 = (12, 20, 28) ĉ3 = (11) ĉ4 = (10)

p(t4) = 8 s1 = {3} s2 = {3} s3 = {} s4 = {1} 8

ĉ1 = (12, 20, 24) ĉ1 = (12, 20, 24) ĉ1 = (11) ĉ1 = (8)
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