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Abstract

Top Trading Cycles is an e�cient school assignment mechanism that respects

each school's priorities up to the school's capacity; however, it is impossible for any

e�cient mechanism to respect all of each school's priorities. We address whether

or not it is possible to respect any intermediate level of priorities. Unfortunately,

we prove that no e�cient mechanism is always able to respect more priorities than

the number of students it has capacity for. Our motivation is whether or not it is

possible for a school board to designate certain priorities as untradeable (such as

sibling or walk-zone priorities). We model this formally and demonstrate that it

is not possible without severe unintended consequences.

JEL Classi�cation: C78, D61, H75, I28

Key Words: Matching Theory, Market Design, School Choice Problem

1 Introduction

The central tension in school assignment is that there does not always exist an assign-

ment which is Pareto e�cient and fair in the sense of respecting student preferences and

priorities. A number of papers have considered how to make a fair assignment more
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e�cient, how to make e�cient assignments fairer, and whether or not alternative fair-

ness concepts are compatible with e�ciency.1 Our paper seeks to quantify the extent to

which an e�cient assignment mechanism is able to respect priorities.

The Top Trading Cycles mechanism (hereafter TTC) has the desirable property of

respecting top priorities. Speci�cally, for a school a with capacity q, if a student has one

of the q highest priorities at a, then she is guaranteed to be assigned to a or a school she

strictly prefers. In this sense, although TTC does not respect all of a school's priorities,

it does respect the priorities up to a school's capacity. The question we address is

whether any e�cient mechanism respects more than these top priorities.

Unfortunately, we �nd a negative result. We demonstrate that it is not possible

for an e�cient mechanism to respect any additional top priorities.2 Therefore, TTC is

optimal among e�cient mechanisms in the sense that no e�cient mechanism respects

more priorities than does TTC.

We further show that even much weaker notions of e�ciency are incompatible with

protecting more priorities when student strategies are taken into consideration. An

assignment is de�ned to be perfect if every student is assigned to her favorite school.3

Clearly a perfect assignment is not always possible, but we prove that a mechanism

that respects more than top priorities and a version of Maskin monotonicity, which we

call top-move invariance4, does not always make a perfect assignment even when one

exists. We prove that this result extends even if we only desire constrained e�ciency.

Moreover, these results hold if we replace top-move invariance with a weak consistency

notion.5 It is intriguing that these basic properties are incompatible.

Our question is motivated by the following practical question. Boston was the �rst

school district to choose between a fair and an e�cient mechanism for school assignment.

In explaining the reasoning for not choosing TTC, Superintendent Payzant writes:6

1See Kesten (2010), Morrill (2014), Dur, Gitmez, and Yilmaz (2015), Morrill (2016), and Klooster-

man and Troyan (2016).
2Speci�cally, we mean that no e�cient mechanism always respects additional priorities. Of course,

it is possible for an e�cient mechanism to respect more priorities in some problems.
3To the best of our knowledge, the de�nition of perfect was introduced by Aziz, Brandt, and Har-

renstein (2013).
4A mechanism is top-move invariance if a student cannot change its outcome by moving her assign-

ment at the top of her submitted preferences.
5A mechanism is weakly consistent if the removal of an unassigned student does not change the

assignments of the other students.
6This memo can be found at http://www.iipsc.org/resources/tpayzant-memo-05.25.2005.pdf. Ac-

cessed August 6, 2013.
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Another algorithm we have considered, Top Trading Cycles Mechanism,

presents the opportunity for the priority for one student at a given school

to be �traded� for the priority of a student at another school, assuming each

student has listed the others school as a higher choice than the one to which

he/she would have been assigned. There may be advantages to this approach,

particularly if two lesser choices can be traded for two higher choices. It may

be argued, however, that certain priorities e.g., sibling priority apply only to

students for particular schools and should not be traded away.

Superintendent Payzant's concern regarding TTC raises the following design ques-

tion. Is it possible to design a trading mechanism where students are allowed to trade

some priorities but not others? To answer this question we consider a general frame-

work of trading mechanisms in the spirit of Papai's hierarchical exchange mechanisms

Pápai (2000). We say a mechanism is a trading mechanism if it is an iterative process

that proceeds as follows. Each spot at a school is allocated to some student (where the

spots may be allocated to just one student or a variety of students). In each round, the

mechanism determines a trade between students (where it is possible that the trade is

trivial in the sense of a student taking one of her own spots). We say such a trading

mechanism respects restricted priorities if the mechanism never selects a trade involving

a restricted priority such as sibling priority. We show that it is not possible to design a

trading mechanism with basic fairness and e�ciency properties without creating severe

unintended consequences. Speci�cally, a student may be made worse o� by having the

highest priority at a school (if the priority is restricted) then if instead she had the

lowest priority.

Our paper contributes to the growing literature on the e�cient assignment of stu-

dents to indivisible schools when no school is owned by any of the students. This topic

was pioneered by Pápai (2000) who introduced the version of TTC that we study here.

TTC is part of a broader class of mechanisms introduced by Pápai (2000) called hierar-

chical exchange rules. Pycia and Ünver (2011a) introduce a class of trading mechanisms

called trading cycles that extend hierarchical exchange rules. Kesten (2004) introduced

an alternative trading algorithm called Equitable Top Trading Cycles. Morrill (2014)

introduces an alternative called Clinch and Trade. Both Equitable Top Trading Cycles

and Clinch and Trade are designed to make an e�cient assignment with fewer instances

of justi�ed envy than TTC.

This problem is important because of its applicability to assigning students to public
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schools. This problem was �rst considered by Balinski and Sönmez (1999) and then

by Abdulkadiro§lu and Sönmez (2003). Abdulkadiro§lu, Pathak, Roth, and Sönmez

(2005) discusses the market design considerations of applying DA and TTC to the

school assignment problem.

The organization of the rest of the paper is as follows: in the next section we describe

the model and the axioms we use in our analysis. In Section 3 we demonstrate the

impossibility results. In Section 4, we introduce a class of trading mechanisms and show

that students might be punished when their priorities are improved.

2 Model

We de�ne a school choice problem as a list (I, S, q, P,�, e) where

• I is the set of students,

• S is the set of schools,

• q = (qs)s∈S is the quota vector where qs is the number of available seats at school

s,

• P = (Pi)i∈I is the preference pro�le where Pi is the strict preference of student i

over the schools and the option of being unassigned which we denote by s∅,

• �= (�s)s∈S is the priority pro�le where �s is the strict priority relation of school

s over I,

• e = (es)s∈S is the protected (restricted) priority pro�le where es is the number of

students with a protected priority for school s.

Each parameter is standard with the exception of the protected priorities. Protected

priorities are the key innovation of this paper and will be explained in greater detail later.

We set qs∅ = |I| since we assume no restriction on the number of students who may be

unassigned. We will often refer to the rank of a student at a particular school. The

rank of student i at school s ∈ S, denoted by rs(i), is de�ned as rs(i) := | {j|j �s i} |.
Let Ri be the at-least-as-good-as relation associated with Pi for all i ∈ I. We say a

school s is acceptable for student i if sPis∅ and school s is unacceptable for student i if

s∅Pis.
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Given a school choice problem, an assignment µ : I → S ∪{s∅} is a function which

assigns each student to a school, possibly s∅, such that the number of students assigned

to a school is less than or equal to its capacity. For a given assignment µ, the assignment

of student i is denoted by µi, and the set of students assigned to s is denoted by µs. Let

µ−s be the set of students not assigned to school s, i.e., µ−s = I \ µs.

An assignment µ is perfect if all students in I are assigned to their most preferred

school in S ∪ {s∅}. Clearly, in general a perfect assignment need not exist. Moreover,

for any problem there exists at most one perfect assignment.

The following de�nitions are standard in the school choice literature. We include

them for completeness of the paper. An assignment µ Pareto dominates another as-

signment ν if each student i ∈ I weakly prefers her assignment under µ to her assignment

under ν and there exists at least one student j who strictly prefers her assignment under

µ to her assignment under ν. An assignment µ is Pareto e�cient if there does not

exist another assignment ν which Pareto dominates µ. For brevity, we will say e�cient

instead of Pareto e�cient.

An assignment µ is individually rational if each student i ∈ I is not assigned to

an unacceptable school, i.e., µi Ri s∅ for all i ∈ I. An assignment µ is nonwasteful

if there does not exist a student school pair (i, s) such that sPiµi and |µs| < qs. It

is straightforward to verify that if an assignment is wasteful or individually irrational,

then it is not Pareto e�cient. Similarly, if an assignment is Pareto ine�cient, then it

is not perfect. An assignment µ is fair if there does not exist a student school pair

(i, s) where s Pi µi and i �s j for some j ∈ µs. A weaker fairness and nonwastefulness

notion is mutual best. An assignment µ satis�es mutually best if there does not exist

a student-school pair (i, s) such that s is i's favorite school, i is the highest-ranked at s,

but i and s are not assigned.

Given (I, S, q, e), a pro�le of students, schools, capacities, and protected priorities,

a mechanism φ is a function which maps preferences and priorities to an assignment.

The assignment under φ for the preference and priority pro�le (P,�) is denoted by

φ[I,S,q,e](P,�) and i's assignment under φ is denoted by φ[I,S,q,e]
i (P,�). When (I, S, q, e)

are clear from context, we will denote φ[I,S,q,e](P,�) by φ(P,�). In the rest of the paper,

we refer quadruple (I, S, q, e) as subproblem.

For each property of an assignment, we say that a mechanism φ satis�es that property

if for all school choice problems (I, S, q, P,�, e), the assignment φ[I,S,q,e](P,�) satis�es

the property. For example, a mechanism φ is nonwasteful if for all assignment problems

(I, S, q, P,�, e), the assignment φ[I,S,q,e](P,�) is nonwasteful. A mechanism φ is perfect
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if it selects the perfect assignment whenever it exists.

A mechanism φ is strategy-proof if for any assignment problem (I, S, q, P,�, e)
there does not exist a student i and a preference relation P ′i such that φi(P

′, P−i,�
) Pi φi(Pi,�). A mechanism φ is nonbossy if a student cannot change the assignment

of the other students without changing her own assignment by submitting di�erent

preference list. That is, φ is nonbossy if for any P and P ′i φi(P
′
i , P−i,�) = φi(P,�)

implies φ(P ′i , P−i,�) = φ(P,�).

We will use a weak version of Maskin (1999) monotonicity.7 Given a student i and an

assignment µ, Pi is µi-on-top if µiPis for every school s ∈ ((S∪{s∅})\{µi}). We de�ne

a mechanism φ to be top-move invariant if for all preferences P and all students i, if

P ′i is φi(P,�)-on-top, then φ(P,�) = φ(P ′i , P−i,�).

It is not obvious that top-move invariance relates directly to nonbossiness. Top-

move invariance says that a particular way of changing preferences does not change any

student's assignment. Nonbossiness says that if one students change does not a�ect her

own assignment, then it does not a�ect any other student's assignment. However, as

the next result shows, top-move invariance is a stronger condition than nonbossiness

(Proposition 1). When we restrict our attention to strategy-proof mechanisms, the two

conditions are equivalent (Proposition 2).

Proposition 1 Any top-move invariant mechanism is nonbossy.

Proof. Suppose φ is top-move-invariant, and consider any student i and any pref-

erences Pi, P ′i , and P−i such that φi(P,�) = φi(P
′, P−i,�) = s. Let P̄i be any pref-

erences that ranks s �rst. Since φ is top-move invariant φ(P̄ , P−i,�) = φ(P,�) and

φ(P̄ , P−i,�) = φ(P ′, P−i,�). Therefore, φ(P̄ , P−i,�) = φ(P ) = φ(P ′, P−i,�) which

implies that φ is nonbossy.

It is straightforward to verify that top-move invariance is a strictly stronger condition

than non-bossiness. For example, consider the following variation of a serial dictatorship.

In a standard serial dictatorship, when it is a student's turn, she chooses her favorite

school. Consider instead the mechanism which assigns the dictator her least favorite

school. This mechanism is nonbossy, but when the initial dictator ranks her assignment

7We will not use Maskin monotonicity in our analysis, but we de�ne it here for completeness. R′i
is a monotonic transformation of Ri at s ∈ S if any school ranked above s under R′i is also ranked

above s under Ri (that is, s
′R′is ⇒ s′Ris for every school s′). R′ is a monotonic transformation of R

at assignment µ if for every student i, R′i is a monotonic transformation of Ri at µi. A mechanism is

Maskin monotonic if whenever R′ is a monotonic transformation of R at µ, then φ(R′) = φ(R).
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�rst, she no longer receives it. Therefore, it is not top-move invariant. However, the

next result demonstrates that among strategy-proof mechanisms, the two conditions are

equivalent.

Proposition 2 Any strategy-proof and nonbossy mechanism is top-move invariant.

Proof. Let φ be strategy-proof and nonbossy. Consider a problem P . Suppose

under φ(P,�), i is assigned to a and let P ′i be any preference in which i ranks a at

the top of the list. If φi(P
′
i , P−i,�) 6= a, then φi(P,�)P ′iφi(P

′
i , P−i,�) which would

violate strategy-proofness. Therefore, φi(P
′
i , P−i,�) = a. Since φ is nonbossy and

φi(P,�) = φi(P
′
i , P−i,�), φ(P,�) = φ(P ′i , P−i,�). Therefore, φ is top-move invariant.

Pápai (2000) proved that TTC is strategy-proof and nonbossy. Therefore, Proposi-

tion 2 implies that TTC is top-move invariant. It is worth mentioning that the school

proposing DA is top-move invariant and nonbossy but is not strategy-proof.8

3 Results

The fundamental tension in school choice is that there does not in general exist an

assignment which is fair and Pareto e�cient. TTC has the property that it respects the

top qs priorities at each school s. However, a natural question is whether or not it is

ever possible to respect any additional priorities.

Unfortunately, we prove here that it is never possible. Speci�cally, we consider the

following weakening of fairness and prove that it is incompatible with any Pareto e�cient

mechanism. For notational convenience, we de�ne 0 and emax to be the |S|-dimensional

vectors where each entry is 0 and |I|, respectively.

De�nition 1 Let 0̄ ≤ e ≤ emax. An assignment µ is e-fair if there does not exist a

student i and a school s such that (i) sPiµi; (ii) rs(i) ≤ es; and (iii) i �s j where µj = s.

A mechanism φ(I,S,q,e) is e-fair if for every (P,�), φ(I,S,q,e)(P,�) is e-fair.

8Let s be student i's assignment under the school proposing DA. No school s′ that i strictly prefers

to s proposed to i. Therefore, whether or not i ranks this school above s is irrelevant to the outcome

of school proposing DA. Hence, the school proposing DA is top-move invariant. For the nonbosiness

we refer to Afacan and Dur (2017).
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Similar to the de�nition of stability in Section 2, we say an assignment µ is e-stable

if it is e-fair, nonwasteful and individually rational. A mechanism φ(I,S,q,e) is e-stable if

for every (P,�), φ(I,S,q,e)(P,�) is e-stable.

Condition (ii) is the novel part of De�nition 1. In particular, if e = emax, then

e-fairness and fairness are equivalent. Since there is no fair and e�cient mechanism,

there is no mechanism that is e�cient and emax-fair. As noted, if for every school s,

es ≤ qs, then TTC is Pareto e�cient and e-fair. Our main result is to demonstrate

that for any nontrivial assignment problem and any intermediate e, there does not exist

a Pareto e�cient and e-fair mechanism. Since e-fairness is a weaker condition than

fairness, this result is stronger than the incompatibility between Pareto e�ciency and

fairness (Balinski and Sönmez, 1999). We de�ne a problem to be nontrivial if there are

at least two schools, |S| ≥ 2, and for any two schools a, b ∈ S, qa + qb ≤ |I| (i.e. that

there is potentially competition for each school). These two conditions are very natural

when we consider school choice in practice.

Proposition 3 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then

if es ≥ qs for every school s and es > qs for some school s, then no mechanism is Pareto

e�cient and e-fair.

Proof. Fix a school a such that ea > qa. Let b be any other school in S. Label

a subset of the students I1 = {i1, i2, . . . , iqa−1}, I2 = {j1, j2, . . . , jqb−1}, and {i, j, k}.
This requires there to be at least qa + qb + 1 students which follows by our nontriviality

assumption (qa + qb < |I|). Let �a rank students in {i1, i2, . . . , iqa−1, i, k, j} as the qa + 2

highest-ranked students, in that order. Let �b rank students in {j1, j2, . . . , jqb−1, j, i, k}
as the qb + 2 highest-ranked students, in that order. Rank the remaining students at a,

b and all students for all other schools arbitrarily.

De�ne the students preferences as follows (where 1 ≤ m ≤ qa−1 and 1 ≤ n ≤ qb−1):

Pim Pjn Pi Pj Pk

a b b a a

s∅ s∅ a b s∅

s∅ s∅

Suppose φ is Pareto e�cient and e-fair. Let µ be the assignment made by φ under

(P,�). Hence, µ is e-fair. If µ is wasteful, then µ cannot be Pareto e�cient. Hence, we

take µ as nonwasteful. First, µim = a for any student im where 0 ≤ m ≤ qa− 1 since by

construction each student im has one of the qa highest priorities. Note that if µj = a,
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then µk 6= a. Since k has the qa + 1 highest priority at a, k �a j, ea ≥ qa + 1, and µ

is e-fair, this would be a contradiction. Therefore, µj 6= a. Since j has one of the qb
highest priorities at b (and eb ≥ qb) and j is not assigned to a, her �rst choice, j must

be assigned to b, her second choice. Similar to above, µjn must be assigned to b for any

0 ≤ n ≤ qb − 1. Since j and {j1, j2, . . . , jqb−1} are assigned to b, i is not assigned to b.

Therefore, i is assigned to a as a is i's second favorite school and she has one of the qa
highest priorities at a. However, this implies that µ is not Pareto e�cient as reassigning

i to b and j to a is a Pareto improvement.

We will show that this result is quite general by considering alternative conditions.

For a mechanism, perfection is a signi�cantly weaker requirement than Pareto e�ciency.

For example, the student proposing DA mechanism is perfect but Pareto ine�cient.

However, when a mechanism is top-move invariant (nonbossy), even this level of e�-

ciency is incompatible with e-fairness (e-stability).

Proposition 4 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then

if es ≥ qs for every school s and es > qs for some school s, then no perfect mechanism

is

1. top-move invariant and e-fair; or

2. nonbossy and e-stable.

Proof. We prove (1) and (2) by using parallel arguments. Suppose φ satis�es the

axioms either in (1) or (2). We consider the example used in the proof of Proposition

3. Suppose each i′ ∈ (I \ (I1 ∪ I2 ∪ {i, j, k})) �nds each school in S unacceptable, i.e.

s∅Pi′s for each s ∈ S. We denote this problem with (P,�).

Under φ(P,�), if a student i′ /∈ (I1 ∪ {i, k}) is assigned to a, then by e-fairness

each student in (I1 ∪{i, k}) is assigned to an acceptable school for her. Similarly, under

φ(P,�), if a student i′ /∈ (I2 ∪ {j}) is assigned to b, then by e-fairness each student in

(I2 ∪ {j}) is assigned to an acceptable school for her. Hence, by feasibility k cannot be

assigned to a or b, and i and j cannot be assigned to their top choices under φ(P,�).

Moreover, if φ is e-stable, then k is assigned to s∅.

Let P ′k be a preference order in which φk(P,�) is ranked as the �rst choice. If

φ is top-move invariant, then by de�nition φ(P,�) = φ(P ′k, P−k,�). If φ is e-stable,

then φk(P ′k, P−k,�) = φk(P,�) = s∅ and nonbossiness implies φ(P,�) = φ(P ′k, P−k,�).

However, under (P ′k, P−k,�) there exists a perfect assignment and φ fails to select it.

Hence, φ is not perfect, a contradiction.
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One can wonder whether there exists a mechanism satisfying all axioms mentioned

in both parts of Proposition 4 except one. The answer is a�rmative. The student

proposing DA mechanism is perfect and e-stable (as it is stable). The TTC mechanism

is perfect and top-move invariant. The school proposing DA is top-move invariant and

e-stable.9

These results demonstrate that there are signi�cant costs to protecting more priori-

ties than the capacity of a school. Intuitively, any attempt to limit the trading of some

priorities may limit the trading of any priorities. We will model this explicitly in the

next section. Next, we consider another way of weakening Pareto e�ciency. We show

that it is not even possible to achieve e-fairness so that the outcome is undominated by

any other e-fair assignment. We call this e�cient e-fairness.

De�nition 2 Let 0̄ ≤ e ≤ emax. An assignment µ is e�ciently e-fair if it is e-fair and

there does not exist an alternative assignment ν which is e-fair and Pareto dominates

µ. A mechanism φ(I,S,q,e) is e�ciently e-fair, where 0̄ ≤ e ≤ emax if for every (P,�),

φ(I,S,q,e)(P,�) is e�ciently e-fair.

We de�ne e�cient e-stability for an assignment and mechanism analogous to De�-

nition 2. We �rst illustrate through a simple example that the student proposing DA

mechanism is not e�ciently e-fair.

Example 1 Let I = {i, j, k}, S = {a, b}, and qs = es = 1 for all s ∈ S.The preferences

and priorities are given as:

Pi Pj Pk �a �b

a b a j i

b a s∅ k j

s∅ s∅ i k

Under this problem, student proposing DA mechanism selects assignment µ where µi =

b, µj = a and µk = s∅. However, there exists an e-fair assignment ν which Pareto

dominates µ: νi = a, νj = b and νk = s∅.

One can wonder whether there exists an e�ciently e-fair mechanism. Recall that,

for a given problem if assignment µ is e-fair, then for any s ∈ S priorities of top

qs + es students are respected for school s. In a recent paper Dur, Gitmez, and Yilmaz

9Recall that e-stability implies e-fairness and top-move invariance implies nonbossiness.
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(2015) show that an e�ciently e-fair assignment always exists.10 Despite this positive

observation, in the following Proposition we show that e�cient e-fairness and top-move

invariance are incompatible.

Proposition 5 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then

if es ≥ qs for every school s and es > qs for some school s, then no mechanism is

1. top-move invariant and e�ciently e-fair; or

2. nonbossy and e�ciently e-stable.

Proof. We prove (1) and (2) by using parallel arguments. Suppose φ satis�es the

axioms either in (1) or (2). We use the same problem used in the proof of Propositions

3 and 4.

In problem (P,�), there exists a unique e�ciently e-fair assignment, denoted by µ,

in which all students in I1 ∪ {i} are assigned to a, all students in I2 ∪ {j} are assigned
to b, and all the other students are assigned to s∅. That is, φ(P,�) = µ. Note that

under µ, i and j are assigned to their second choices. Moreover, if φ is e-stable, then

φk(P,�) = s∅.

Let P ′k be a preference order in which φk(P,�) is ranked as the �rst choice. If

φ is top-move invariant, then by de�nition φ(P,�) = φ(P ′k, P−k,�). If φ is e-stable,

then φk(P ′k, P−k,�) = φk(P,�) = s∅ and nonbossiness implies φ(P,�) = φ(P ′k, P−k,�).

However, under (P ′k, P−k,�), there exists e-stable, therefore e-fair, assignment in which

all students are assigned to their top choices. Hence, φ is not e�ciently e-fair, therefore

e-stable, a contradiction.

Next we consider the strategic implications of protecting priorities and again we �nd

a negative result.

Proposition 6 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then if

es ≥ qs for every school s and es > qs for some school s, then no mechanism is nonbossy,

strategy-proof, and e-stable.

Proof. Suppose φ satis�es all of these axioms. By the de�nition of e-stability, φ

is nonwasteful, individually rational, and e-fair. We use the same problem used in the

proof of Propositions 3 and 4.

10They do not use the term e-fair, but they show that when only some priorities need to be respected,

it is always possible to �nd a Pareto undominated assignment that Pareto improves the student-optimal

stable assignment and respects the protected priorities. Such an assignment is e-fair.
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As explained in the proof of Proposition 4, due to e-fairness and feasibility, k cannot

be assigned to a or b, and i and j cannot be assigned to their top choices under φ(P,�).

Moreover, by individual rationality, φk(P,�) = s∅.

Let P ′k be a preference order in which φk(P,�) = s∅ is ranked as the �rst choice. By

Proposition 2, φ is top-move invariant. Hence, φ(P,�) = φ(P ′k, P−k,�).

Consider the preference order P ′i in which b is the only acceptable school. In prob-

lem (P ′i , P
′
k, P−{i,k},�) due to strategy-proofness and individual rationality i will be

assigned to s∅, φi(P
′
i , P

′
k, P−{i,k},�) = s∅. Moreover, due to nonwastefulness and e-

fairness all students in I1 and I2 are assigned to a and b under φ(P ′i , P
′
k, P−{i,k},�),

respectively. Then, due to nonwastefulness and e-fairness, j is either assigned to a or

b under φ(P ′i , P
′
k, P−{i,k},�). Due to individual rationality, all the other students are

assigned to s∅.

If φj(P
′
i , P

′
k, P−{i,k},�) = b, then the available seat in a is wasted, i.e. a Pj φj(P

′
i , P

′
k, P−{i,k},�

) and |φa(P
′
i , P

′
k, P−{i,k},�)| < qa. If φj(P

′
i , P

′
k, P−{i,k},�) = a, then the available seat

in b is wasted, i.e. b Pj φj(P
′
i , P

′
k, P−{i,k},�) and |φb(P

′
i , P

′
k, P−{i,k},�)| < qb. This

contradicts with the fact that φ is nonwasteful.

As in Proposition 4, there exists a mechanism satisfying all axioms in Proposition

6 except one. TTC mechanism is nonbossy and strategy-proof. Student proposing DA

mechanism is strategy-proof and e-stable. School proposing DA mechanism is nonbossy

and e-stable.

It is worth mentioning that, Propositions 2 and 6 imply that top-move invariance

and e-stability are incompatible.

Pápai (2000) shows that combination of strategy-proofness and non-bossiness is

equivalent to group strategy-proofness. Moreover, Pápai (2000) demonstrates that a

mechanism is group-strategy-proof, Pareto e�cient, and reallocation proof if and only

if it is a hierarchical exchange rule. Hence, as a direct corollary of Proposition 6, any

hierarchical exchange rule fails to be e-fair when es ≥ qs for every school s and es > qs

for some school s.

Corollary 1 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then if

es ≥ qs for every school s and es > qs for some school s, then there does not exist a

hierarchical exchange rule which is e-fair.

We also introduce an alternative axiom which is closely related to consistency. A

mechanism is said to be consistent if whenever a set of students and their assignment are

removed, then the assignment of the remaining students does not change. The axiom we
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consider is much weaker because we only impose a restriction when unassigned students

are removed.

In particular, a mechanism φ(I,S,q,e) is weakly consistent if for every (P,�) and

every student i such that φ(I,S,q,e)
i (P,�) = s∅, then φ

(I\{i},S,q,e)
j (P−i,�) = φ

(I,S,q,e)
j (P,�)

for all j ∈ I \ {i}. For instance, TTC mechanism is not consistent but it satis�es weak

consistency. In the following proposition, we state that the impossibility results above

hold when we include weak consistency.

Proposition 7 Let (I, S, q, e) be a non-trivial subproblem and let 0 ≤ e ≤ emax. Then

if es ≥ qs for every school s and es > qs for some school s, then no mechanism is:

• weakly consistent, perfect, and e-stable.

• weakly consistent and e�ciently e-stable.

• weakly consistent, strategy-proof, and e-stable.

Proof. We refer to the proofs of Propositions 4, 5, and 6.

4 Trading Mechanisms

In this section we focus on a class of trading mechanisms which includes TTC (Ab-

dulkadiro§lu and Sönmez, 2003; Pápai, 2000). In particular, we investigate whether

there exists a trading mechanism which does not allow protected priorities to be traded.

Before starting our analysis we de�ne the class of trading mechanisms.

We say a mechanism φ belongs to the class of trading mechanisms if the followings

are true:

1. For any problem (P,�) , φ selects cycles11 recursively and in each cycle (i1, s1, i2, s2, ..., in, sn)

each student ix is assigned to sx for all x ∈ {1, ..., n} where in+1 = i1. Denote the �rst

cycle selected in problem (P,�) by φc(P,�).

2. The (�rst) cycle selected in a problem (P,�) is not a�ected by the preference

pro�le of the students who are not in the cycle, i.e., φc(P,�) = φc(PIc , P̃−Ic ,�) for any

possible P̃−Ic where Ic is the set of students in φc(P,�).

A cycle (i1, s1, i2, s2, ..., in, sn) respects the protected priorities if there does not

exist x ∈ {1, 2, ..., n} such that rsx(ix) > qsx and ix+1 has protected priority for sx.

11A cycle (i1, s1, i2, s2, ..., in, sn) is a list of students and schools in which student ix points to sx and

sx points to ix+1 for all x ∈ {1, ..., n} where in+1 = i1.

13



A trading mechanism φ respects the protected priorities if for any problem (P,�) the

(�rst) cycle selected by φ, φc(P,�), respects the protected priorities.

We now demonstrate that an attempt to limit what priorities are tradeable (trans-

ferable) may lead to severe unintended consequences under trading mechanisms. We

show that if a school does not allow some of the priorities to be traded (transferred),

then a student can be harmed by having a protected priority. For example, if we do not

allow students to trade sibling priorities, then a student may prefer to be ranked last

by a school then to have the highest, but protected sibling priority. For convenience,

we present the argument as a comparison between having the highest, but protected

priority versus the lowest, but unprotected priority. However, the same argument im-

plies that a student can be better o� by being declared unacceptable by a school than

by having the highest priority at the same school.12 We consider this an unintended

consequence because surely the intention of restricting a priority such as sibling priority

is not to harm the students that have an older sibling attending a school they are not

interested in attending.

Proposition 8 Let φ be any mutually best and nonwasteful trading mechanism which

respects the protected priorities. Under φ, a student can be worse o� having the highest

priority at a school if this priority is protected than having the lowest (but unprotected)

priority.

Proof. Consider the following problem: S = {a, b}, I = {i, j} and q = (1, 1). The

priorities and preferences are given as:

�a �b Pi Pj

i j b a

j i a b

s∅ s∅

Suppose only i has protected priority at a, i.e., ea = 1 and eb = 0. Suppose φ is a

trading mechanism and satis�es all axioms stated above. Since both students �nd both

schools acceptable, in any nonwasteful assignment seats at a and b are �lled. Then, we

consider following possible cycles which can be selected by φ �rstly:

12We do not frame it this way since we have not allowed schools to declare students unacceptable in

our model. However, all algorithms could be easily modi�ed to allow this and the same result would

hold.
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1. i→ a→ i,

2. i→ b→ i,

3. j → a→ j,

4. j → b→ j,

5. i→ b→ j → a→ i,

6. i→ a→ j → b→ i.

Note that, under (1), (4), and (6) φ assigns i to a and j to b. While under (2), (3), and

(5) φ assigns i to b and j to a.

By assumption, i has protected priority at a. Therefore, φ cannot select cycle (5).

Otherwise, φ fails to satisfy respecting the protected priorities. Suppose φ selects (2).

Then, due to mutual best j can change the assignment of i who is in the �rst selected

cycle by ranking b as �rst choice. This is also true for cycle (3). Hence, φ assigns i to a.

Now consider the following priority structure in which i has the lowest, but unpro-

tected priority at a.

a b Pi Pj

j j b a

i i a b

s∅ s∅

We can interpret this priority pro�le as follows: In the �rst problem i has sibling

priority but in the second one i does not have sibling priority.

In this second problem any mutually best mechanism assigns j to a. And in order

not to waste the seat in b, i will be assigned to b: i becomes better o� by losing her

sibling priority at school a.

An alternative way of presenting Proposition 8 is to use a similar concept to the

respecting improvement in the test scores introduced by Balinski and Sönmez (1999).

Since the priority structure in the school choice environment does not only depend on

the test scores we use an axiom called respecting improvement in the priorities. We say

that �̃ is an improvement in the priorities for student i ∈ I if:

(1) i �s j =⇒ i�̃sj for all s ∈ S,
(2) there exists at least one student j and school s′ such that j �s′ i�̃s′j, and
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(3) k �s l⇐⇒ k�̃sl for all s ∈ S and l, k ∈ I\{i}.
A mechanism φ respects improvements in the priorities if �̃ is an improvement

in the priorities for student i ∈ I, then φi(P, �̃)Riφi(P,�). That is, a mechanism

respects improvements in the priorities if a student is not punished for having higher

priorities for some schools. Now we can re-state our result in Proposition 8 by using

respecting improvements in the priorities.

Corollary 2 There does not exist a mutually best, nonwasteful trading mechanism

which respects the protected priorities and improvements in the priorities.

Proof. We refer to the proof of Proposition 8.

5 Conclusion

This paper explores the extent to which respecting priorities is compatible with e�ciency

in school assignment. Unfortunately, we demonstrate a general negative result: it is not

possible to respect more priorities than the capacity of a school without con�icting with

even the most basic e�ciency properties. The key implication of this result is whether

or not it is possible for a school board to allow some priorities to be traded but not

school-speci�c priorities such as sibling attendance or being within walking distance to

the school. This paper demonstrates that it is impossible to design a trading mechanism

that makes a subset of the priorities untradeable without sacri�cing even the most basic

e�ciency properties. This suggests that if the trading of some priorities is completely

unacceptable to a school board, then they should use the DA mechanism instead of the

TTC mechanism.
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