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Abstract

We introduce a new school choice problem motivated by the following observations:

students are assigned to grades within schools, many students have siblings who are

applying as well, and many school districts require siblings to attend the same school.

The latter disquali�es the standard approach of considering grades independently as

it separates siblings. We argue that the central criterion in school choice�elimination

of justi�ed envy�is now inappropriate, as it does not consider siblings. We propose

a new solution concept that addresses this. Moreover, we introduce a strategy-proof

mechanism that satis�es it. Using data from the Wake County magnet school assign-

ment, we demonstrate the impact on families of our proposed mechanism versus the

�naive� assignment wherein sibling constraints are not taken into account. Interest-

ingly, the problem can be equivalently modeled within the many-to-many matching

with contracts framework, and our results have novel implications in this literature.

Despite the fact that neither families' nor schools' choice functions are substitutable

(even bilaterally), we show that there always exists a stable assignment.
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1 Introduction

School assignment is now one of the most well-studied topics in market design. In this

expansive literature, every paper that we are aware of considers the problem of assigning

students to schools. In practice, however, a student is assigned to a grade within a school.

It is tempting to dismiss this observation as a trivial technicality. Indeed, Gale and Shapley

(1962) showed that a model where schools have multiple seats is essentially the same as

the marriage market, lending credence to the idea that we may consider each grade inde-

pendently without loss of generality. There is a simple reason why this typically is not

possible: school boards often require that siblings attend the same school, and many chil-

dren have siblings involved in the same assignment procedure. It is immediately clear that

an assignment protocol that considers grades independently may separate a large number

of siblings.

We encountered this problem when designing and administering the assignment pro-

cedure for the Wake County Public School System's (WCPSS) magnet program. In the

2017-2018 academic year, WCPSS was the 15th largest school system in the United States

with a total of 160,429 students. The district is comprised of 183 schools (grades K-12)

with over 38 magnet schools; seats at the latter are assigned to students via a school choice

program.1 Over 20% of students in the system have siblings in the K-12 grades. It is com-

mon for multiple siblings to apply for a magnet assignment at the same time; about 13%

of students fall into this category. This occurs, for example, when a family has just moved

to Wake County or when a family decides to try for a (di�erent) magnet program after the

older child has already begun attending school. Since student assignments across grades

are determined simultaneously, it is not possible to automatically give the highest priority

to siblings. These situations are likely to persist, as Wake County is one of the fastest

growing counties in the country and a signi�cant proportion of the growth is attributed to

migration.2

Both WCPSS and parents view sibling separation as unacceptable. WCPSS states

1See Dur, Hammond, and Morrill (2018), and Dur, Hammond, and Kesten (2018) for additional details
about Wake County.

2On average, more than 40 people moved to Wake County per day in 2017, accounting for 68% of the
growth. See http://www.wakegov.com/census.
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explicitly that assigning siblings together is one of its strictest requirements:

�The highest priority in any of the application processes is for entering grade

siblings to attend the same school as an older sibling, so long as the siblings live

at the same address... This means that if you apply for more than one sibling to

attend a school, the application process will not select one sibling without the

other. If there are not available seats for each sibling, the program will select

none of the siblings.� -WCPSS3

Similarly, on a message board created by WCPSS to elicit feedback on policy changes,

parents voiced strong concerns about separating siblings:

�...it is NOT RIGHT for students or to ask parents to decide between sacri�cing

what's good for one child... in order to have children at the same school versus

keeping one child... and other sibling(s) who forcibly must attend a di�erent

school. The latter situation is easily and potentially a logistical nightmare.�

-Parent in WCPSS Online Discussion4

If we assign students to grades independently, then many siblings would be assigned to

di�erent schools. Alternative methods are required, then, to avoid misassignment. Hence,

we are faced with a real-life problem a�ecting hundreds of families with school-aged children.

These complications are likely for any school district that has a policy of keeping siblings

together.

This motivates a new market design problem: assigning families to schools. We general-

ize the standard school choice problem of Abdulkadiroğlu and Sönmez (2003) by specifying

which students are siblings and splitting schools to grades. In order to be considered for

her corresponding grade, each student still reports a ranking over schools, but (as WCPSS

policy dictates) siblings are required to report the same preference ranking over schools.

Furthermore, since WCPSS �will not select one sibling without the other�, we constrain

feasible assignments as such.

3Retrieved June 2018 at https://www.wcpss.net/Page/33755. Also see the Wake County Board of Ed-
ucation Policy Manual, Policy 6200 and 6200 R & P �Student Assignment�.

4Retrieved August 2018 at https://wcpss.granicusideas.com/discussions/2018-19-enrollment-proposal-
draft-1/topics/feedback-about-proposed-grandfathering-changes.
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The central criterion in the school choice literature is respecting a student's priority.5

We say that student i has justi�ed envy at, or �blocks�, an assignment if i prefers a school s

to her own assignment, and i has a higher priority than a student assigned s. An assignment

with justi�ed envy is typically interpreted as being unfair.6

This de�nition is no longer appropriate when there are siblings. We discuss two reasons

why. First, if i has a sibling, then it is not enough for i to have justi�ed envy at a school

for the assignment to be unfair. For i to attend that school, her sibling must also have a

su�ciently high priority at that school. A relevant notion of justi�ed envy must somehow

take into account all of i's siblings; the standard de�nition does not. Second, suppose i has

justi�ed envy of j, i does not have siblings, but j does. In this case, removing j would also

remove all of j's siblings (even if the latter have high priority). This could result in empty

seats.7 While school boards may have di�erent ways of weighing capacity utilization versus

honoring priorities, at WCPSS (and the other school systems we have spoken to) the clear

primary objective is to maximize the number of children who are able to participate in the

magnet program, while respecting priorities is secondary.

We generalize what constitutes a block to resolve these issues. Intuitively, under no

justi�ed envy, a student ranked xth can block the assignment of the yth ranked-student

when x < y and they are in the same grade. We extend this to allow the xth and wth ranked

students to block the yth and zth ranked students so long as x < y and w < z, and they

are in the same respective grades. Speci�cally, we allow a group of students J to block an

assignment if there is a group of students K such that the students of J , one by one, have

justi�ed envy over the students of K.8 Both J and K must be �closed under siblings� in

the sense that if J (K) contains one sibling, then it must contain all siblings. Otherwise,

replacing J withK would possibly separate some set of siblings and the resulting assignment

would not be feasible.

Our de�nition of blocking generalizes the standard de�nition of justi�ed envy since when

5Many school districts including, Boston, New York, and Chicago, have adopted an assignment procedure
that respects students' priorities.

6See also the student placement problem of Balinski and Sönmez (1999).
7This would violate the priority of j's sibling, as she has justi�ed envy of the �empty seat�.
8Our formal de�nition allows for J to have more students than K if the school in question is not assigned

to its full capacity.
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there are no siblings, the two notions are equivalent. A coalition can be a mixture of siblings,

only children, and students from more than one grade. Thus, our blocking coalitions can

be quite complex and allow for far more general combinatorial patterns of blocking than

the simple blocking considered under justi�ed envy. Note that a group of students need not

be related to block others. We de�ne an assignment as suitable if there is no such blocking

coalition.9

Does a suitable assignment always exist? There is reason to be pessimistic. Our problem

is closely related to the famous matching with couples problem in the context of matching

doctors and hospitals; in this problem, a stable assignment�a closely related equilibrium

notion�might not exist. Intuitively, this is because some doctors (those that are single) view

the hospitals as substitutes while other doctors (those that are couples) view the hospitals

as complements. We will show that in our problem not only do sibling preferences violate

substitutability, but any choice function used by the schools will also violate substitutability.

We give a more detailed discussion of similarities and di�erences in the Related Literature

section.

Our main result is to show that despite this, a suitable assignment always exists (Theo-

rem 2). We do this by introducing a new family of mechanisms called Sequential Deferred

Acceptance (SDA) whose members always select a suitable assignment. Furthermore, we

show that no student can manipulate these mechanisms by reporting false preferences�each

mechanism is strategy-proof, or dominant-strategy incentive compatible (Theorem 2).

Using data from the WCPSS magnet program assignment for the 2018-2019 school

year, we compare the assignment of our new mechanism versus the �naive� grade-by-grade

Deferred Acceptance assignment. The latter generates 196 instances of sibling mismatch;

the SDA brings this �gure down almost to 0. Does this mean that the SDA simply ignores

individual priorities for the sake of keeping siblings together? It turns out, this concern

does not materialize. The SDA is able to keep siblings together at a very low �cost�: only

17 students in the entire Wake County school district were 1) assigned to a school (because

their sibling was) and 2) violated another student's priority.

Our results are also of interest in the matching with contracts literature initiated by

Hat�eld and Milgrom (2005). Their generalization of the two-sided matching problem

9Neither suitability nor group stability implies each other.

5



allows agents not just to match but to match with certain terms or conditions�the set of

possibilities de�nes the set of possible contracts. In their �many-to-one� model of workers

and �rms, each worker has a preference over the contracts (involving them), and each �rm

has a choice function de�ned over the sets of contracts (involving them). A set of contracts

(an assignment) is stable if no agent wants to drop any currently held contract, and no

other set of contracts would be chosen by some agents in lieu of the current ones. Hat�eld

and Milgrom (2005) showed that substitutability of the �rms' choice functions was su�cient

to guarantee the existence of a stable assignment. As such, the property (and subsequent

relaxations) is a central point of discussion in this literature. If in addition, the Law of

Aggregate Demand is satis�ed, then there is a strategy-proof mechanism that selects a

stable assignment. We further discuss this topic in the Related Literature section.

School assignment with siblings �ts naturally within the �many-to-many� variant of the

matching with contracts framework. Yenmez (2018) studies the college admissions problem

with early decisions, and is the only other paper that we are aware of that also examines

an application of this variant. Our problem is many-to-many because a family possibly

needs multiple seats at a school, and each seat at a grade may be thought of as a contract

between the parents and the school. Our results tell a surprising and contrasting story

here: Despite the fact that neither schools nor families have substitutable choice functions,

a stable assignment always exists. Furthermore, schools' choice functions do not satisfy the

Law of Aggregate Demand, yet there is still a mechanism that selects a stable assignment.

1.1 Related Literature

We contribute to the literature on school choice pioneered by Balinski and Sönmez (2003)

and Abdulkadiroğlu and Sönmez (2003). We brie�y mention some key contributions in

school choice: Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005) and Abdulkadiroğlu,

Pathak, and Roth (2005) examine school choice programs in Boston and NYC; Erdil and

Ergin (2008) and Abdulkadiroğlu, Pathak, and Roth (2009) study issues regarding priority

classes and the breaking of ties; and Kesten (2010) proposes a new mechanism for improving

on the e�ciency of the student optimal stable match. To the best of our knowledge, we are

the �rst to explicitly model siblings, grades, and the ensuing institutional constraint that
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siblings must be assigned to the same school. Several recent papers also study extensions

where students may apply as groups or are assigned sequences of seats over time: Dur and

Wiseman (2018) consider a problem where students may express preferences to attend the

same school as their neighbors, as opposed to siblings. Kennes, Monte, and Tumennasan

(2014) study the Danish daycare assignment system where each child is assigned to a school

each period, so that each student must express preferences over sequences of schools.10

Our paper is related to matching with couples in the context of assigning doctors to

hospitals. In these papers, couples are allowed to apply together and submit rankings

over pairs of (possibly di�erent) hospitals. Roth (1984) showed that when couples are

present, there may be no stable assignment. Klaus and Klijn (2005) provide maximal

domain results (in terms of allowable preferences for the couples) to ensure the existence

of a stable assignment. Some also consider the case (as in ours) where each couple must

always be assigned to the same hospital (see Dutta and Masso (1997)), but have di�erent

assumptions about hospital preferences.11

The key theoretical di�erence between our paper and the matching with couples liter-

ature is that sibling contraints give rise to particular types of complementarities exhibited

uniformly by all sibling pairs and schools.12 These types are not present in matching with

couples (as there are no �grades�). In some ways, this makes the problem more di�cult: all

schools and many agents have complementarities in their preferences. In other ways, the

problem is easier: since the complementarities are based on grades and sibling contraints,

there is a common structure across schools' preferences.

Roth and Peranson (1999) provide a detailed overview of the algorithms implemented

in the US National Resident Matching Program, wherein couples may apply to hospitals

together. Kojima, Pathak, and Roth (2013) similarly study the matching market for psy-

chologists (run by the Association of Psychology Postdoctoral and Internship Centers), and

propose a theoretical framework for modeling large markets. Empirically, the couples prob-

lem is signi�cantly di�erent from the siblings problem. Table 1 collates key average statistics

10Kurino (2014) studies a related dynamic problem where instead of each school having a priority, each
agent's current assignment is treated as an endowment.

11For example, our school's choice functions do not satisfy Dutta and Masso's weaker form of substi-
tutability (group substitutability). See example in the proof of Theorem 1.

12Section 2.2 provides a formal discussion.
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Table 1: Matching With Couples vs. School Assignment With Siblings

NRMP Psychology WCPSS
(1993-1996) (1999-2007) (2018)

Couples / Siblings as % of Applicants 4.1% 1.3% 20%
Number Hospitals / Schools 3,755 1,094 38

Average Capacity 6.1 2.5 30

from the NRMP, the market for psychology internships, and magnet school admission in

Wake County.13 Couples make up a substantially smaller proportion of the total applicants

than sibling pairs. A large number of hospitals have low capacity, while a small number of

magnet programs have high capacity. Roth and Peranson (1999) found that surprisingly

despite the negative theoretical results, a stable assignment existed in each year they ob-

served (for the NRMP). Kojima, Pathak, and Roth (2013) show that when there are few

couples and preference lists are short (relative to the whole market size), the probability

of a stable assignment approaches one as the market grows. Using several years of data

from the market for clinical psychologists, they also �nd a stable assignment in each year.

In extreme contrast, for each of the four years in which we have run the WCPSS school

assignment, there has never been an assignment without justi�ed envy and keeps siblings

together.

Our problem can be modeled in the matching with contracts framework initiated by

Hat�eld and Milgrom (2005). They show that substitutability (on the school side) is su�-

cient for the existence of a student optimal (and also school optimal) stable assignment.

If in addition the Law of Aggregate Demand is satis�ed, then the mechanism de�ned

by the student-o�ering Cumulative O�er Process is strategy-proof. Hat�eld and Kojima

(2010) show the extent to which substitutability can be relaxed while maintaining exis-

tence and de�ne two progressively weaker notions�unilateral substitutability and bilateral

substitutability. Both guarantee the existence of a stable assignment, but for the latter,

optimality for any side of agents as well as a doctor-stategy-proof mechanism is lost. In

the context of many-to-many matching with contracts, when both sides can sign multiple

contracts, Hat�eld and Kominers (2017) show that substitutability of both sides choice

13See Roth and Peranson (1999) Table 1, and Kojima, Pathak, and Roth (2013) Table 1.
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functions guarantees the existence of a stable assignment.

The emerging message seemed to be that straying too far (or at all) from the substi-

tutable domain results in the non-existence of a stable assignment, and/or strategy-proof

mechanisms. However, the discussion turned when a series of papers emerged identifying

interesting and real-life cases where substitutability was violated, but a stable assignment

still exists.

Sönmez and Switzer (2013) study the problem of cadet branch-of-choice matching at

the United States Military Academy. They show that although branches choice functions

are not substitutable, the cadet optimal assignment exists and de�nes a stable and strategy-

proof mechanism that respects cadets' priorities. Kominers and Sönmez (2016) introduce

a more general environment where unilateral substitutability is violated, and an agent op-

timal assignment does not exist, but there is still a strategy-proof mechanism that selects

from the stable correspondence. In these two papers, bilateral substitutability was still sat-

is�ed. Abizada (2016) and Abizada and Dur (2018) study college admissions problem with

stipend o�ers. Despite the presence of complementarities causing the failure of bilateral

substitutability, they show the existence of a pairwise stable and strategy-proof mechanism

exists.14 We contribute to this literature by identifying another natural environment in

which (bilateral) substitutability is violated, but a stable and strategy-proof mechanism

exists.

2 Model

We consider the problem of assigning students to schools. As in the standard model, there

is a �nite set of students, I, and a �nite set of schools, S. Unlike the standard model, the

students are part of a family and each school has multiple grades. Let G = {1, ..., n} be
the �nite set of grades and γ : I → G be the grade function such that student i applies to

grade γ(i). Let γ(J) = ∪i∈Jγ(i).

For each grade g ∈ G, let Ig denote the set of students applying for grade g, i.e.,

Ig = {i ∈ I : γ(i) = g}. Let F be a partition of students into families. For a student i in

14In pairwise stability, blocking coalitions are restricted to be a single student and school pair.
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partition f ∈ F , we will refer to f as i's family. If i and j are in the same family, we refer to

them as siblings. If i is the only member of i's family, then we call i an only child. To avoid

technical complications, we restrict families to have either one student or two, and we do

not allow there to be twins (i.e., if i and j are siblings, then they are applying for di�erent

grades). This is not without loss of generality, and we explain in Appendix A complications

that these assumptions avoid.15 Each student i ∈ I has a strict ranking Pi over the set of

schools and being unassigned (denoted ∅). Let P be the set of strict rankings over S ∪ {∅}.
For each Pi ∈ P , let Ri be the weak ranking associated with Pi.

16 We require that if i and

j are siblings, then Pi = Pj (and therefore, it is unambiguous to refer to the preferences

of a family). This assumption is based on the restrictions imposed by WCPSS. They allow

siblings to be treated as individuals, but if students wish to be treated as siblings in the

assignment procedure, all siblings must submit the same ranking of schools. With slight

abuse of notation, we represent the preference of a family f with Pf and Pf is the same as

the preference of each member of family f .

Each school s ∈ S has a capacity vector qs = (qgs)g∈G where qgs denotes school s's capacity

for grade g ∈ G. In addition, each school s ∈ S has a vector of priority rankings for each

grade denoted �s= (�gs) where �gs is a strict ranking of Ig, the students applying for grade

g ∈ G.
A subset of students J ⊆ I is closed under siblings if for each family f ∈ F , either

f ⊆ J or f ∩ J = ∅.17 In words, if J contains a student, then it also contains that student's

sibling (if any). An assignment µ is a function µ : I → S∪{∅}. We refer to the assignment

of student i, the students assigned to a school s, and the students assigned to grade g at s

as µi, µs, and µ
g
s, respectively. Mathematically, µs = {i ∈ I : µi = s} and µgs = µs ∩ Ig. An

assignment µ is feasible if for each school s ∈ S (i) µs is closed under siblings and (ii) for

each grade g ∈ G, |µgs| ≤ qgs . In words, all siblings are assigned to the same school, possibly

∅, and no school is assigned more students in a grade than it has capacity for. We restrict

our attention to feasible assignments and for expositional convenience will typically refer to

15Empirically, these types comprise a smaller subset of the applying students: In the 2016-2018 school
years, only 2.4% of the applying students were in a family with more than two siblings, and 3.4% were in
a family with twins.

16For each s, s′ ∈ S, sRi s
′ if and only if s Pi s

′ or s = s′.
17Note that f can either be a set of two siblings or a set of a single student.
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them simply as assignments. Let A be the set of all possible feasible assignments. For each

assignment µ ∈ A, and each J ⊆ I, school s has available seats for J at µ if for each

g ∈ γ(J), |{j ∈ J : γ(j) = g}| ≤ qgs − |µgs|.
A problem is a tuple (I, S,G, q,�, P ), and a mechanism (or rule) ϕ recommends for

each problem an assignment that is feasible (for that problem). We denote the assignment

selected by mechanism ϕ under problem (I, S,G, q,�, P ) with ϕ(I, S,G, q,�, P ) and the

assignment of student i with ϕi(I, S,G, q,�, P ).

We say student i ∈ I (weakly) prefers assignment µ to assignment ν if µiPiνi (µiRiνi).

Assignment µ Pareto dominates assignment ν if each i ∈ I weakly prefers µ to ν and

some j ∈ I prefers µ to ν. Recall that we restrict two siblings to report the same preference;

thus a manipulation by a family of two is necessarily comprised of changing both students'

preferences. The next property states that no single student or pair of siblings is better

o� from reporting false preferences. A mechanism is strategy-proof if for each problem

(I, S,G, q,�, P ), each f ∈ F , each P ′f = (P ′i )i∈f ∈ Pf , and each i ∈ f , ϕi(I, S,G, q,�
, P )Ri ϕi(I, S,G, q,�, P ′f , P−f ). If f is comprised of one student, then the de�nition is

standard. Note that since siblings have the same preference, and are never separated, there

is no need to de�ne preferences over arbitrary pairs of assignments.

2.1 A New Criterion for Respecting Priorities

In this section, we de�ne �justi�ed envy� in terms of which coalitions are able to block an

assignment. Here, we interpret a blocking pair as an objection by a parent (or parents)

to an assignment that the school board would concur with. Without siblings and grades,

student i and school s would form a blocking pair to an assignment if i prefers s to her

assignment and i has a higher priority at s than one of the students j assigned to s. We

can de�ne an analogous concept in our model. To be consistent with the literature (and

to di�erentiate from how we de�ne stability) we say student i ∈ Ig (i.e. a gth grader) has

justi�ed envy at assignment µ if there exists a school s and a student j ∈ µgs such that

s Pi µi and i �gs j. The presence of siblings means that justi�ed envy is not su�cient to

constitute a blocking pair in our more general problem. Consider the following example.
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Example 1 Students i1 and i2 are siblings, while j and k are only children. School s

has two grades, priorities for students are listed below each grade, and each grade has one

available seat.

�1
s �2

s

i1 k

j i2

Consider the assignment where j and k are assigned to s. Student i1 has justi�ed envy

of j. However, it is not feasible to assign i1 to s unless we also assign her sibling i2 to s.

Note that i2 does not have su�ciently high priority at s to warrant admission over k�so

assigning i1 and i2 to s generates justi�ed envy from k.

It is not su�cient for one sibling to be admitted to the school as this would result in an

infeasible assignment. As a result, it is not enough for one sibling to have justi�ed envy.

All siblings must have justi�ed envy.

The presence of siblings also restricts the ability of only children to block an assignment.

Consider the following example.

Example 2 Students i1 and i2 are siblings, while j is an only child. School s has two

grades, priorities for students are listed under each grade, and each grade has one available

seat.

�1
s �2

s

i1 j

i2

There are three feasible assignments:

Grade

1 2

Assignment 1 i1 i2

Assignment 2 ∅ j

Assignment 3 ∅ ∅

12



The only feasible assignment in which all seats are �lled is the �rst assignment: i1 and i2

are assigned to s.

In Example 2, if we assign i1 and i2 to school s, then student j has justi�ed envy.

However, since the student she envies has a sibling, honoring j's objection would result in

more than one student being removed from the school. Since school districts care about

capacity utilization far more than honoring preferences, this is not an objection they would

grant. Therefore, we do not allow a set of students of size n to block the assignments of

more than n students.

These two observations motivate our de�nition of blocking coalitions. It intuitively

extends justi�ed envy in two ways: a block must consider all siblings, and students one by

one have justi�ed envy. We also allow for students to block empty seats.

De�nition 1 A set of students J = {j1, . . . , jn} block an assignment µ if there exists a set

of students K = {k1, . . . , km} and school s such that:

1. Both J and K are closed under siblings and |J | ≥ |K|.

2. For each x ∈ {1, . . . ,m}, jx has justi�ed envy of kx at s.

3. s has available seats for jm+1, . . . , jn at µ.

We allow K to be empty. An assignment is suitable if it is not blocked by any set of

students. A suitable assignment µ is called student optimal suitable if there does not

exist another suitable assignment that Pareto dominates µ.

In De�nition 1, the �rst condition addresses our concerns from Examples 1 and 2.

Requiring J and K to be closed under siblings and |J | ≥ |K| means that 1) for each

student k ∈ K, there is a di�erent student in J that has justi�ed envy over k, 2) we do

not remove more students than we are assigning, and 3) honoring priorities of students in

J results in a feasible assignment. Note that this de�nition is a generalization of justi�ed

envy if there are no siblings, conditions 1 and 3 hold trivially for any instance of justi�ed

envy. Moreover, an only child with justi�ed envy of another only child is still su�cient to

block an assignment.

The following example illustrates several new types of coalitions admitted under this.
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Example 3 We provide three new types of blocking scenarios.

�1
s �2

s �1
s �2

s �1
s �2

s �3
s �4

s �5
s

i1 i2 m n ` i1 i2 k1 k2

j1 j2 i1 i2 m1 m2 j1 j2 n

In the left priority pro�le, students i1 and i2 would be able to block the assignment of j1

and j2 to s. Similarly, in the middle pro�le, m and n would be able to block the assignment

of i1 and i2 to s. Our notion also allows for interesting combinations of individual and

sibling pair students to form a blocking coalition. In the right pro�le, the combination of

single and sibling pair students in the �rst row would be able to block the assignment of

single and sibling pair students in the second row to s.

If there exists an assignment µ that has no justi�ed envy, then µ is also suitable. No

individual agent has justi�ed envy, so it is not possible for any coalition to have one by one

justi�ed envy. A suitable assignment, however, may have an agent with justi�ed envy. In

Example 2, Assignment 1 is suitable but j has justi�ed envy.

Despite our property being an intuitive generalization, several interesting properties of

the set of assignments that have no justi�ed envy do not carry over when we consider

suitable assignments.

In the standard school choice problem, there is a unique assignment that has no justi�ed

envy and Pareto-dominates any other assignment that has no justi�ed envy. This is no

longer true of suitable assignments. We show by example that there is no unique student

optimal suitable assignment.

Example 4 Students i1 and i2 are siblings, as are students j1 and j2. School s has two

grades, priorities for students are listed under each grade, and each grade has one available

seat.

�1
s �2

s

i1 j2

j1 i2

There are two suitable assignments: assigning either i1 and i2 to s or j1 and j2 to s.

There is no Pareto ranking of these two assignments.
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When schools have responsive preferences, the set of unassigned students at each stable

assignment is the same.18 Although we have not de�ned stability yet, it is equivalent to

having no justi�ed envy when schools have such preferences. In contrast, in the example

above, we observe two suitable assignments where the set of unassigned students is di�erent.

Lastly, any mechanism that selects an assignment without justi�ed envy, satis�es an

�unassigned invariance� property: adding a new student to the problem does not cause

some student who was unassigned (in any assignment with no justi�ed envy) to now be

assigned (in any assignment without justi�ed envy). A mechanism that selects from the

suitable correspondence does not always satisfy this property.

2.2 Choice Among Sets of Students

The primary challenge in our problem is that although we know how a school ranks students

within a grade, we do not know how the school would choose among applicants across

grades. In other words, schools provide individual student rankings�not sets of students.

In practice, it is essentially left to the designer to extend priorities to selections over sets

of students. Here we consider what choice rules are consistent with priorities, capacities,

and the institutional constraint that siblings are assigned to the same school. Formally, let

P(I) denote the powerset of I. A choice rule for school s is a function Cs : P(I)→P(I)

such that for every J ⊆ I, Cs(J) ⊆ J . For each subset of students J ⊆ I, a subset K ⊆ J

is closed under siblings in J if for each f ∈ F , either f ∩ J ⊆ K or (f ∩ J)∩K = ∅. In
words, if K contains a student, then it also contains that student's sibling if they appear

in J . In our context, there are two additional requirements for a choice rule to be valid:

for any subset of students J ⊆ I (i) for every grade g, |Ig ∩ Cs(J)| ≤ qgs and (ii) Cs(J) is

closed under siblings in J .19 In words, the �rst condition says that s does not choose more

students for grade g than the grade has capacity. The second condition says that a school

must choose either all siblings or none in J .

In the literature, a choice rule is de�ned to be responsive to a priority order and

18This is referred to as the �Rural Hospital Theorem� of Roth (1986). Also see Kojima (2011), Klijn and
Yazici (2014), and Mart́inez, Massó, Neme, and Oviedo (2000).

19In general, for any J ⊆ I, K is a valid set in J for school s if K ⊆ J , |Ig ∩K| ≤ qgs , and K is closed
under siblings in J .
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capacity if it chooses the highest ranked students up to the capacity. Responsive choice

rules are not typically consistent with the requirement that siblings must be assigned to

the same school. This is illustrated by Example 1. Given the set of students {i1, j, k, i2}, if
school s chooses the highest ranked students for each grade, then s would choose i1 and k.

However, this chosen set is not valid as it separates siblings.

Responsiveness captures the notion that even when there is some ambiguity regarding

preferences, some comparisons are unambiguous. If we want to choose two out of four

students, then it is ambiguous whether having the top and last ranked student is better

or worse than having the second and third ranked students; however, it is unambiguous

that having the �rst and second ranked students is the best possible outcome. Here, we

highlight a second comparison that is unambiguous. It is clear that having your �rst and

third favorite student is better than having your second and fourth favorite student. The

assignment has improved in each position.

De�nition 2 Given two disjoint sets of students J,K ⊆ I, and a priority order �s=
(�gs)g∈G, J rank-dominates K at school s if there exists an ordering of J = {j1, . . . , jn}
and an ordering of K = {k1, . . . , km} such that n ≥ m and for every x ≤ m jx �γ(jx)

s kx

and for some x′ ≤ m, jx′ �
γ(jx′ )
s kx′.

A school should never choose a rank-dominated set of students�motivating the following

de�nition.

De�nition 3 Given a set of students I ′ ⊆ I and a priority ordering �s= (�gs)g∈G, a choice
function Cs for school s conforms to �s if there does not exist a set of students J ⊂ I ′

such that (i) J is a valid set in I ′ for s and (ii) J rank-dominates Cs(I
′) at s.

Without siblings, a choice function conforming to a priority is equivalent to a choice

function responding to a priority. In particular, choosing the qgs -highest students for each

grade g ∈ G is feasible when there are no siblings and rank-dominates any other set;

therefore, it must be chosen by a choice rule that conforms to the ranking. This is also

chosen by a responsive choice rule, and so the two de�nitions are equivalent. In the rest of

our analysis, we focus on the choice functions which conform to the each school's respective

priority ordering.
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A choice rule is substitutable if for each I ′′ ⊂ I ′ ⊆ I, i /∈ Cs(I ′′) implies i /∈ Cs(I ′).
We show that a conforming choice function cannot be substitutable.

Theorem 1 Let s ∈ S, and Cs conform to �s. Then, Cs violates substitutability.

Proof. Let G = {1, 2}, S = {s} and I = {i1, i2, j, k, l,m} where i1 and i2 are siblings.

Students {i2, j, k} are second graders, and {i1, l,m} are �rst graders. School s has grade-

capacities q1
s = 1 and q2

s = 2. Consider the following priorities for s:

�1
s �2

s

m j

i1 k

l i2

We describe several situations where it is unambiguous what must be selected by any

conforming choice function (as it is the only undominated alternative).

We �rst consider the students in I1 = {j, i1, i2, `}. The set of students {i1, i2, j} rank-
dominates any valid set in I1 for s. Hence, any conforming choice function Cs selects

{i1, i2, j} when I1 is considered, i.e. Cs(I1) = {i1, i2, j}.
Second, we consider the students in I2 = I1 ∪ {k}. There are two valid sets in I2

for s that are not rank-dominated by any other valid sets in I2: {j, k, `} and {i1, i2, j}. If

Cs(I2) = {j, k, `}, then since ` ∈ I1 ⊆ I2, ` /∈ Cs(I1), and ` ∈ Cs(I2), Cs is not substitutable.

Then, any conforming and substitutable choice function Cs selects {i1, i2, j} when I2 is

considered, i.e. Cs(I2) = {i1, i2, j}.
Lastly, we consider all students I = I2 ∪ {m}. The set of students {j, k,m} rank-

dominates any valid set in I for s. Hence, any conforming choice function Cs selects {j, k,m}
when I is considered, i.e. Cs(I) = {j, k,m}. Since k ∈ I2 ⊆ I, k /∈ Cs(I2), and k ∈ Cs(I),

Cs is not substitutable.

The violations of substitutability are di�erent than what we might initially have ex-

pected. A school must either accept both siblings or accept neither, so the most obvious

type of complements are this type of �left shoe/right shoe� complements. Although this
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type of complement is clear, this is not what creates a violation in Theorem 1. These com-

plements are �hidden� in the sense of Hat�eld and Kominers (2016): Since each school either

accepts both students or rejects both, and since siblings submit the same ranking, a school

will never receive the application of just one sibling. Rather, what is present here is what

we refer to as �the enemy of my enemy is my friend� complements. Suppose a student i,

who has no siblings, is rejected in favor of j who has an older sibling. If the school receives

additional applications for the higher grade, this can cause j's older sibling to be rejected

which causes j to be rejected. This sequence of rejections can result in i being accepted

as there is now a �free� seat at the lower grade. In this sense, even an only child can be

complements with other only children as their application can help only children at other

grades be accepted.

3 Existence Via A New Mechanism

Our main result demonstrates that a suitable assignment always exists. We introduce a

new mechanism (by means of an algorithm) that selects a suitable assignment and is also

strategy-proof.

The algorithm assigns students grade-by-grade, except that siblings of the students in

the grade under consideration may also be assigned. Let . be a strict precedence order over

G; for each g, g′ ∈ G, g . g′ means assignment to g is done before g′. Label grades so that

g1 . g2 . ... . g|G|. Let I1 = I.

For any problem (I, S,G, q,�, P ) and any precedence order ., the Sequential Deferred

Acceptance w.r.t. . (SDA.) selects its outcome through the following procedure:

Step 1: Deferred Acceptance with Types for Grade g1

Step 1.0: (Type Determination for Grade g1) If student i ∈ I1 ∩ Ig1 has a sibling in

Ig, then she is a type g student. If student i does not have any sibling, then she is

type g1 student.

Step 1.1: Each student i ∈ Ig1 applies to her best choice under Pi. Each school s �rst

considers each type g ∈ G applicant and tentatively accepts the best qgs of the type g
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applicants according to �g1
s and rejects the rest type g applicants. Among the unre-

jected applicants, each school s tentatively accepts the best qg1
s applicants according

to �g1
s and rejects the rest.

For each m>1:

Step 1.m: Each student i ∈ Ig1 applies to her best choice under Pi that has not rejected

her yet. Each school s �rst considers each type g ∈ G applicant and tentatively

accepts the best qgs type g applicants according to �g1
s and rejects the rest of the type

g applicants. Among the unrejected applicants, each school s tentatively accepts the

best qg1
s applicants according to �g1

s and rejects the rest.

Step 1 terminates when there is no more rejection. Each student i and her sibling, if any,

are assigned to the school, possibly ∅, tentatively holding i when Step 1 terminates. Each

assigned student is removed and we denote the remaining students with I2. We update the

number of remaining seats in each school and grade.

Step k>1: Deferred Acceptance with Types for Grade gk

Step k.0: (Type Determination for Grade gk) If student i ∈ Ik ∩ Igk has a sibling in

Ig, then she is a type g student. If student i does not have any siblings, then she is

type gk student.

Step k.1: Each student i ∈ Igk applies to her best choice under Pi. Each school s �rst con-

siders each type g ∈ G applicant and tentatively accepts the best qgs type g applicants

according to �gks and rejects the rest of the type g applicants. Among the unrejected

applicants, each school s tentatively accepts the best qgks applicants according to �gks
and rejects the rest.

For each m>1:

Step k.m: Each student i ∈ Igk applies to her best choice under Pi that has not rejected

her yet. Each school s �rst considers each type g ∈ G applicant and tentatively

accepts the best qgs type g applicants according to �gks and rejects the rest of the type

g applicants. Among the unrejected applicants, each school s tentatively accepts the

best qgks applicants according to �gks and rejects the rest.
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Step k terminates when there is no more rejection. Each student i and her sibling, if

any, are assigned to the school, possibly ∅, tentatively holding i when Step k terminates.

Each assigned student is removed and we denote the remaining students with Ik+1. We

update the number of remaining seats in each school and grade.

The algorithm terminates after we run DA for all grades, i.e. after Step |G|.

Notice that each order . of the grades de�nes a di�erent mechanism. Next, we illustrate

the dynamics of SDA. in the following example.

Example 5 Let I = {i1, i2, j1, j2, k1, k2, `1, `2,m, n, o}, S = {s1, s2, s3}, G = {1, 2, 3} and
1 . 2 . 3. For each x ∈ {i, j, k, `}, students x1 and x2 are siblings. Let I1 = {i1, j1, k1,m},
I2 = {i2, j2, `1, n}, I3 = {k2, `2, o}, qs1 = (2, 1, 1), qs2 = (1, 2, 1) and qs3 = (1, 1, 1). Let

preferences and priorities be as below:

s1 s2 s3

Pi Pj Pk P` Pm Pn Po �1
s1
�2
s1
�3
s1
�1
s2
�2
s2
�3
s2
�1
s3
�2
s3
�3
s3

s1 s1 s2 s3 s1 s1 s3 i1 i2 k2 j1 `1 k2 k1 n k2

s2 s2 s3 s2 s3 s3 s2 j1 j2 o i1 i2 o m1 `1 o

s3 s3 s1 s3 s2 s2 s1 m `1 `2 k1 j2 `2 j1 j2 `2

k1 n m n i1 i2

SDA. �nds its outcome as follows:

Step 1.0: Students i1 and j1 are type 2, student k1 is type 3, and student m is type 1.

Step 1.1: Students i1, j1 and m apply to s1 and student k1 applies to s2. School s1 �rst

considers type 2 applicants (i1 and j1) and rejects j1 since q2
s1

= 1 and i1 �1
s1
j1. Then,

two remaining applicants (i1 and m) are tentatively accepted by s1. Since k1 is the only

applicant for s2 and its quota is not binding for grade 1 and grade 3, s2 tentatively accepts

k1.

Step 1.2: Students i1 and m apply to s1, and students k1 and j1 apply to s2. Only student

k1 is rejected from s2, and all the other students are tentatively accepted.

Step 1.3: Students i1 and m apply to s1, student j1 applies to s2, and student k1 applies

to s3. Step 1 terminates since no student is rejected. Students i1, i2, and m are assigned
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to s1, students j1 and j2 are assigned to s2, and students k1 and k2 are assigned to s3. The

updated quotas are: qs1 = (0, 0, 1), qs2 = (0, 1, 1) and qs3 = (0, 1, 0).

Step 2.0: Student `1 is type 3 and student n is type 2. All other students in I2 were

assigned in Step 1.

Step 2.1: Students `1 and n apply to s3 and s1, respectively. Student `1 is rejected because

there is no remaining seat for her sibling for grade 3 and student m is rejected since all

seats of s1 were allocated in Step 1.

Step 2.2: Students `1 and n apply to s2 and s3, respectively. Step 2 terminates since no

student is rejected. Student `1 and `2 are assigned to s2 and student m is assigned to s3.

The updated quotas are: qs1 = (0, 0, 1), qs2 = (0, 0, 0) and qs3 = (0, 0, 0).

Step 3.0: Student o is type 3. All other students in I3 were assigned in Steps 1 and 2.

Step 3.1: Student o applies to s3 and she is tentatively accepted. Step 3 terminates since

no student is rejected. Student o is assigned to s3.

Now we are ready to present the properties of SDA..

Theorem 2 For each order ., the SDA. is suitable and strategy-proof.

Proof. Consider an arbitrary problem (I, S,G, q,�, P ) and an order over G denoted by .

where g` . g`+1 for each ` ∈ {1, ..., |G| − 1}. Let µ = SDA.(I, S,G, q,�, P ).

Suitability : We prove by induction and show that µ cannot be blocked by some valid

set of students. We �rst consider the set of students who are assigned in Step 1 of the

SDA. algorithm, i.e. the students in Ig1 and their siblings from other grades. If there exist

students i, j ∈ Ig1 such that µjPiµi and i �g1
s j, then i has a sibling applying for some grade

g′ 6= g1 and all available seats of µj at grade g
′ are �lled with students whose siblings have

higher priority than i under �g1
µj
, and they are also assigned to s. Therefore, µ cannot be

blocked by a group of students that includes the students assigned in Step 1. Note that the

set of students assigned in Step 1 includes all students in Ig1 and their siblings.

Suppose µ cannot be blocked by a set of students that includes the students assigned in

the �rst k steps of SDA.. We consider the students assigned in Step k+1. By our inductive

hypothesis and De�nition 1, it su�ces to consider the subproblem with the updated quotas
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that we have in Step k + 1 of the SDA algorithm. If there exist students i, j ∈ Igk+1 such

that µjPiµi and i �gk+1
s j, then either i has a sibling applying for some grade g′ 6= gk+1

and all available seats of µj at grade g
′ are �lled with students whose siblings have higher

priority than i under �gk+1

µ(j) and they are also assigned to s or j has been assigned in some

step k′ ≤ k and j has a sibling in Ik
′
. Therefore, µ cannot be blocked by a group of students

Ī which includes the students assigned in Step k + 1.

Since the algorithm for SDA. ends after a �nite number of steps (|G|), we are done.

Strategy-proofness : Consider Step 1 of the algorithm for SDA.. We will show that

students in I1 ∩ Ig1 cannot manipulate. Let t : I1 ∩ Ig1 → G identify for each agent a type

as follows: For each i ∈ I1 ∩ Ig1 , let t(i) be g1 if i has no siblings, and gk if i has a sibling

in grade gk ∈ G. For each s ∈ S, and each g ∈ G, let q̂gs = min{qg1
s , q

g
s}. Then, the tuple

(I1∩Ig1 , S, (qg1
s )s∈S, (�g1

s )s∈S, PI1∩Ig1 , t, (q̂
g
s)g∈G,s∈S) forms a school choice problem with type-

speci�c quotas as in Abdulkadiroğlu and Sönmez (2003) (what they refer to as controlled

choice with �exible constraints). The assignment at the end of Step 1 of the SDA. is

then the same as the outcome of their modi�cation of the Deferred Acceptance mechanism.

Notice that no agent in I1 ∩ Ig1 is involved in the algorithm again. By Proposition 5 of

Abdulkadiroğlu and Sönmez (2003), no agent in I1 ∩ Ig1 can manipulate their mechanism,

and the same follows for the SDA.. Let I2 be the remaining students after Step 1 is implied.

We repeat this procedure for Step 2; the remaining steps are similar. Let t : I2∩Ig2 → G

identify for each agent a type as follows: For each i ∈ I2 ∩ Ig2 , let t(i) be g2 if i has no

siblings, and gk if i has a sibling in grade gk ∈ G\{g1}. For each grade g ∈ G\{g1}, let
Xg
s be the number of students assigned to grade g at school s in Step 1 of the SDA.. For

each s ∈ S, and each g ∈ G\{g1}, let q̂gs = min{qg2
s − Xg2

s , q
g
s − Xg

s }. Then, the tuple

(I2 ∩ Ig2 , S, (qg2
s − Xg2

s )s∈S, (�g2
s )s∈S, PI2∩Ig2 , t, (q̂

g
s)g∈G,s∈S) forms a school choice problem

with type-speci�c quotas. By repeating the same reasoning for all grades, we can show that

no student can manipulate the SDA..

Although SDA. is suitable and strategy-proof, it is not Pareto-e�cient. This is not so

suprising, as in the standard school choice problem, the Deferred Acceptance mechanism is
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not Pareto-e�cient either.20

We may ask whether there exists a strategy-proof and suitable mechanism whose assign-

ment is not Pareto-dominated by any other suitable assignment in any problem. Unfortu-

nately, our next proposition demonstrates that no such mechanism exists.

Proposition 1 There is no strategy-proof, suitable, and Pareto-undominated (within the

suitable set) mechanism.

Proof. Suppose by contradiction that there is such a mechanism; call it ϕ. Let I =

{i1, i2, j1, j2, k1, k2, `1, `2}, S = {s1, s2, s3}, and G = {1, 2}. At each grade, each school has

a capacity of one. Let preferences and priorities be as below:

s1 s2 s3

Pi Pj Pk P` �1
s1
�2
s1
�1
s2
�2
s2
�1
s3
�2
s3

s2 s1 s1 s3 `1 `2 j1 j2 k1 k2

s1 s2 ∅ s1 i1 i2 i1 i2 `1 `2

k1 j2

j1 k2

The only suitable assignment that is not Pareto-dominated by some other suitable as-

signment is bolded.

Consider a second problem that is the same except that the j sibling pair reports P ′j1 =

P ′j2 where s1 P
′
j1
∅P ′j1 s2 P

′
j1
s3. By strategy-proofness, the same assignment is selected by ϕ.

Finally, consider a third problem that is the same as the second except that the k sibling

pair reports P ′k1
= P ′k2

where s1 P
′
k1
s3 P

′
k1
∅. By strategy-proofness, ϕ does not assign the

k siblings to s1. By suitability, ϕ assigns s3 to k1 and k2. By feasibility and suitability,

ϕ assigns s1 to `1 and `2, and s2 to i1 and i2. From this assignment, notice that k and `

are better o� swapping schools. If they do so, this forms a suitable and Pareto-dominating

assignment�contradicting the assumptions on ϕ.

20Also, in the standard school choice problem there is no mechanism that has no justi�ed envy and is
Pareto-e�cient.
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4 Comparison of the Naive and Sequential Deferred Ac-

ceptance Assignments In Wake County

Using data from the WCPSS magnet program assignment for the 2018-2019 school year, we

present a comparison of the assignment outcomes of the grade-by-grade Deferred Acceptance

(the �naive� assignment) and the Sequential Deferred Acceptance mechanisms in Table 2.

A total of 6,994 students applied for seats across grades K-12.

For each level of schooling (elementary, middle, and high school), under the SDA.

mechanism we start with the highest grade and continue with the next highest grade. We

augment the SDA. to accommodate for twins and family group sizes of more than two.21

If there were no such students, our formal de�nition never separates siblings; but here, we

observe several mismatches. We use this augmentation for two reasons: it is simple and

transparent, and the resulting mismatch may be seen as a conservative estimate regarding

the e�cacy of the SDA. (as we could make further changes ensuring that twins always go

to the same school).

The key �nding is that the naive assignment separates siblings at a rate 15 times that of

the SDA.. Furthermore, our new assignment also demonstrates that we can implement the

institutional constraint of keeping siblings together with very few students causing priority

violations�only 17 such instances occurred.

The naive assignment does not meet the WCPSS policy of sending all siblings to the

same school. This is perhaps unsurprising as the mechanism does not take into account the

existence of siblings at all. In total over all grades K-12, 171 students are separated from

their siblings, or 12.6% of the total number of applying students with siblings (1,361). This

percentage is similar for all sub-levels of schooling: elementary (12.5%), middle (9.2%), and

high (15.9%). Much of the mismatch comes from students with siblings in entry grades.

By design, the SDA. sends virtually all siblings to the same school. In total over all

grades K-12, 99% of all siblings are assigned to the same school as their siblings; this

21In 2018, the average percentage of students with one sibling that is not a twin, students with one sibling
that is a twin, and students with two or more siblings was respectively 16.9%, 4%, and 2.5%. For twins we
treat each as a single student in the algorithm. Any separation of twins also recorded as sibling mismatch.
For each student with more than one sibling, when we process the grade in which the oldest sibling appears,
we also assign their younger siblings to the same school.
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amounts to separating siblings 15 times less than the naive assignment. All mismatched

siblings under SDA. are twins.

The total number of siblings who are all assigned to the same school (as opposed to all

being unassigned) is also greater in the SDA.. Over all grades K-12, it is 13% more (573

to 662; of the total number of siblings) than in the naive assignment. This captures the

scenario where an older sibling is assigned to a school and thus their younger sibling now

follows (but would have been unassigned in the naive assignment).

We now examine the extent to which the constraint of keeping siblings together causes

instances of individual justi�ed envy. We count the number students j for which there is

another student i who has justi�ed envy of j at the SDA. assignment. For the entire school

district, there were only 17 such instances. Each violation of priorities is caused by the

situation that we would expect: a younger sibling follows an older sibling, but individually

has a lower priority than some other students who would rather attend. Of all instances,

6 are caused by students who are sibling triples, and the remaining are caused by students

who are part of a sibling pair.

5 Matching with Contracts

The matching with contracts framework of Hat�eld and Milgrom (2005) is a natural alter-

native environment to study school assignment with siblings. We may think of each seat

at a school as an agreement or �contract� signed between a parent and the school for the

upcoming year. Parents want seat(s) for their children, and schools select multiple students;

each side has preferences described by choice functions over contracts. If a school selects

a certain subgroup of students out of a set of applicants, then this may be interpreted as

the selected students having the �right� to attend the school over those rejected. Thus, if

an assignment is not stable, then there may exist a group of parents with legal recourse to

claim di�erent seats than those recommended to them.

In the matching with contracts literature, substitutability is a critical property for exis-

tence of stable assignments. Hat�eld and Kominers (2017) show that the domain of substi-

tutable choice functions is a maximal one guaranteeing the existence of stable assignments

in many-to-many matching with contracts framework.
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Table 2: WCPSS 2018-2019 Comparison of Naive and SDA Assignments

Applicants Assigned Mismatched Justi�ed
Total with w/ Sibling Siblings Envy

Grade Applicants Siblings Naive SDA Naive SDA Naive SDA

K 1,342 374 247 250 42 0 0 0
1 308 107 4 7 7 0 0 2
2 260 88 5 7 13 0 0 1
3 269 100 5 6 24 0 0 1
4 234 90 4 4 13 0 0 0
5 154 65 1 1 4 0 0 0

K − 5 2,567 824 266 275 103 0 0 4

6 1,785 204 156 163 17 7 0 7
7 164 28 10 11 1 0 0 0
8 121 29 16 19 6 0 0 0

6− 8 2,070 261 182 193 24 7 0 7

9 1,871 215 159 170 22 4 0 2
10 336 36 6 12 15 0 0 4
11 115 15 4 5 4 0 0 0
12 35 10 4 7 3 0 0 0

9− 12 2,357 276 173 194 44 4 0 6

K − 12 6,994 1,361 573 662 171 11 0 17

The purpose of this section is to demonstrate the existence of a real-life mechanism

design application where the choice functions of both sides violate substitutability, and yet

stable assignments still exist.

5.1 Existence Despite Complementarities

Let (I, S,G, q,�, P ) be a problem as before with minor di�erences. In particular, under

this model I is the set of parents and P is the preference of parents over schools. We allow

a school to prioritize parents di�erently for di�erent grades, i.e. i �gs j �g
′
s i. We denote

the subset of grades parent i is applying to with γ(i). Consistent with Section 2, we assume

|γ(i)| ≤ 2 for all i ∈ I. Let X ⊆ I × S ×G be the �nite set of possible contracts such that
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X = ∪i∈I
(
∪s∈S

(
∪g∈γ(i)(i, s, g)

))
. Each contract x ∈ X speci�es a parent i, a school s, and

a grade g. Let i(x), s(x), and g(x) denote the parent, school, and grade related to contract

x, respectively. Similarly, for any subset of contracts Y ⊆ X, i(Y ), s(Y ), and g(Y ) denote

the set of parents, set of schools and set of grades related to contracts in Y , respectively.

Given a subset of contracts Y ⊆ X, let Yi, Ys, and Y
g denote the contracts related to parent

i, school s, and grade g, respectively.

An assignment Y ⊂ X is a set of contracts such that each parent i ∈ I appears in at

most |γ(i)| contracts and each (s, g) pair appears in at most qgs contracts. We refer to Yi as

i's assignment. A mechanism ϕ recommends for each possible problem an assignment.

For each a ∈ I ∪ S, choice of agent a, denoted by Ca : X ⇒ Xa ∪ ∅, is a function such

that for each Y ⊆ X, Ca(Y ) ⊆ Ya. Here, Ca(Y ) = ∅ means that a rejects all contracts in

Y .

For any set of contracts, the chosen subset for each parent is determined as follows:

Parent i �rst considers only schools that give each of their children a seat, then, from these

schools, chooses their most preferred one. Formally, given a subset of contracts Y ⊆ X, let

si(Y ) be the set of schools such that (i, s, g) ∈ Y for all g ∈ γ(i) and s Pi ∅. Each parent

i ∈ I has the following choice function:

Ci(Y ) =

{∪g∈γ(i)(i, s, g) ⊆ Y : sRi s
′ for all s, s′ ∈ si(Y )} if si(Y ) 6= ∅

∅ if si(Y ) = ∅
.

Let Ri(Y ) = Y \ Ci(Y ) be the set of rejected contracts by parent i from Y .

We now turn to schools' choice functions. For each school s, based on its priorities

and capacities, we de�ne the sequential choice function of s. Given a set of contracts

(possibly spanning multiple grades), the school selects a subset in exactly the same way

each school tentatively accepts students in each step of the Sequential Deferred Acceptance

mechanism's algorithm. That is, it proceeds iteratively grade-by-grade and narrows down

the pool of contracts/students in a two-step process. First, for each subgroup of students

with a sibling in a particular downstream grade, select the highest priority students; this

guarantees feasibility of any selection in the second step. Second, out of the remaining

students (who may have siblings across various grades), select the highest priority. We
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provide a formal description in Appendix B.

An assignment Y ⊂ X is stable if it is

• (Individually Rational) for all a ∈ I ∪ S, Ca(Y ) = Ya, and

• (Unblocked) There does not exist Z ⊂ X such that Z 6= ∅, Z ∩ Y = ∅, and for all

a ∈ i(Z) ∪ s(Z), Za ⊆ Ca(Y ∪ Z).

If there is such a Z ⊂ X satisfying the above, then we say that Z blocks Y (at this

problem).

A mechanism that selects a stable assignment for each problem is stable.

We de�ne two properties of choice functions that are crucial to the existence of stable

and strategy-proof mechanisms in the matching with contracts literature. The �rst states

that a contract y that is rejected from a menu of available contracts is still rejected if

another contract y′ is added to the menu. Intuitively, this rules out complementarities

between contracts. A choice function Ca satis�es substitutability if for all Y ⊂ X, and

y, y′ ∈ X\Y , y /∈ Ca(Y ∪ {y}) implies y /∈ Ca(Y ∪ {y, y′}). The second states that the

number of contracts chosen (weakly) increases as the menu size grows. A choice function

Ca satis�es the Law of Aggregate Demand (LAD) if for all Y ⊆ Y ′ ⊆ X we have

|Ca(Y )| ≤ |Ca(Y ′)|.
Next, we examine whether choice functions de�ned above satisfy these two properties.

Proposition 2 For each i ∈ I, Ci satis�es LAD but not substitutability.

The proof of Proposition 2 and all other omitted proofs are given in Appendix B.

The example used in the proof of Proposition 2 can be used to show that Ci does not

satisfy the weaker notion of bilateral substitutability of Hat�eld and Kojima (2010).22

Proposition 3 If Cs is the sequential choice function of s, then Cs satis�es neither substi-

tutability nor LAD.

22A choice function satis�es bilateral substitutability if for each z, z′ ∈ X and Y ⊆ X such that
i(z), i(z′) /∈ i(Y ), z /∈ Ca(Y ∪ z)⇒ z /∈ Ca(Y ∪ z ∪ z′).
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The same example used in the proof of Proposition 3 can be used to show that Cs does

not satisfy the weaker notion of bilateral substitutability.23

Despite the negative results in Propositions 2 and 3, we will show that there is a stable

and strategy-proof mechanism when schools have sequential choice functions. The idea is

essentially the same as that of the Sequential Deferred Acceptance, but we write it in the

language of contracts. We run the Cumulative O�er Process iteratively one grade at a

time assigning students (from this grade) and their siblings; before the start of the next

grade, capacities are revised down. Each school's e�ective choice function restriced to each

iteration/grade (de�ned below) is substitutable and satis�es LAD, leading to its stability

and strategy-proofness.

For each s ∈ S, each g ∈ G, and each grade-speci�c capacity vector q̂ = (q̂g
′
)g′∈G, let a

component choice function for s w.r.t. g and q̂ be a mapping Dg,q̂
s : P(Ig)→P(Ig)

that selects applicants from Ī ⊆ Ig as follows:

Step 1 For each g′ ∈ G\{g}, if the number of applicants from Ī ∩ Ig′ is more than q̂g
′
,

then only the best q̂g
′
applicants according to �gs are tentatively kept and the rest are

rejected.

Step 2 Among the unrejected ones in Ī in Step 1, accept the best q̂g applicants according

to �gs.

Proposition 4 For each s ∈ S, each g ∈ G, and any capacity vector q̂ ∈ NG, Dg,q̂
s satis�es

both substitutability and LAD.

We de�ne the Sequential Cumulative O�er Mechanism w.r.t. ., SCO. as follows:

Let . be a precedence order over the grades, e.g. g1 . g2 . · · · . g|G|. We will determine

an assignment as a sequence of many-to-one matching with contracts problems where we

process grades in order ..

Consider the subproblem at grade 1�Ig1 , schools S, preference pro�le P g1 = (Pi)i∈Ig1 ,

capacity pro�le qg1 = (qg1
s )s∈S, and priority pro�le �g1= (�g1

s )s∈S. Treating this as a many-

to-one matching problem, run the Cumulative O�er Process where each school s uses the

23To show violation of the property by Cs, let Y = Y ′′, z = (j, s, 2), and z′ = (k, s, 1) from the example
in the proof.
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choice function Dg1,q
s . Let µg1 be the resulting outcome, that is µg1 : Ig1 → S ∪ ∅ assigns

each parent i to school s�the interpretation being that each i is assigned at each of the

grades γ(i). Then, the contracts including i and µg1(i) are selected as long as µg1(i) ∈ S.
We revise down capacities for each other grade. For each school s ∈ S, and grade

g′ ∈ G\g1, let the capacity now be q̂g
′
s = qg

′
s − |{i ∈ Ig1 : µg1(i) = s and g′ ∈ γ(i)}|.

Consider the subproblem at grade 2�Ig2\Ig1 , schools S, preference pro�le P g2 = (Pi)i∈Ig2\Ig1 ,

capacity pro�le q̂g2 = (q̂g2
s )s∈S, and priority pro�le �g2= (�g2

s )s∈S. Treating this as a many-

to-one matching problem, run the Cumulative O�er Process where each school s uses the

choice function Dg2,q̂
s . Let µg2 be the resulting outcome.

Repeat this procedure for the rest of the grades to arrive at (µg)g∈G. Let γ̂(i) be the

.-earliest grade in γ(i). Finally, let SCO. for this problem select

⋃
i∈I:

µγ̂(i)(i) 6=∅

⋃
g∈γ(i)

(i, µγ̂(i)(i), g).

Theorem 3 Consider an arbitrary precedence .. If each school s has the sequential choice

function C.
s , then the SCO. mechanism is stable and strategy-proof.

This result is surprising, since neither the parents' nor the the schools' choice functions

satisfy substitutability. This is in stark contrast to Hat�eld and Kominers (2017), where

they show that the substitutable domain is a maximal domain to guarantee existence of a

stable assignment. The �rst key di�erence is that the grade and sibling structure forces

schools' preferences to have such complementarities; hence, each schools' sequential choice

function falls entirely outside the substitutable domain. The second key di�erence is that

in our environment, while priorities vary, the grade and sibling structure is uniform across

schools, and thus the exact same types of resulting complementarities appear in each school's

choices. This uniform structure is crucial for our result.
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6 Conclusion

We demonstrate that the seemingly trivial institutional constraint of keeping siblings to-

gether actually forces a careful consideration of grades and sibling structure. From a the-

oretical standpoint, sibling constraints 1) render the previous requirement of no justi�ed

envy inadequate, 2) introduce interesting complementarities in terms of schools selections

across grades, and 3) require the development of new solution concepts and mechanisms.

There also remain open questions regarding more general sibling structures (e.g. twins,

more than two sibilings).

Essentially all school districts have various types of sibling constraints. We argue that

for many, adoption of the Sequential Deferred Acceptance mechanism is an appropriate,

systematic, and fair alternative to heuristic measures used to �patch� the naive assignment

(to meet the constraints).

Our work also contributes to the ongoing conversation regarding stable assignments and

complementarities in the matching with contracts literature: we provide another real-world

environment where stable assignments exist outside (bilateral) substitutable domains.
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Appendix A

We discuss two extensions to the model: twins, and allowing for more than two siblings in

each family.

Suppose that we allow for twins and require that twins cannot be separated. The

following example shows that there may not be a suitable assignment.

Example 6 Let I = {i1, i2, j, k, `}, S = {s1, s2, s3}, G = {1}, q1
s1

= 2, and q1
s2

= q1
s3

= 1.

Here, i1 and i2 are twin. Let preferences and priorities be as below:

Pi1 Pi2 Pj Pk P` �1
s1
�1
s2
�1
s3

s1 s1 s2 s1 s3 j k j

∅ ∅ s1 s2 s1 ` j `

s3 ∅ ∅ i1

i2

k

Let µ be a suitable assignment. If k is assigned to either s3 or ∅, then k blocks µ. So in

any suitable assignment, k is assigned to either s1 or s2.

Case 1: k is assigned to s1 in µ. Then j is assigned to s2, otherwise j blocks (at s1).

By feasibility, i1 and i2 cannot be separated, so they are unassigned at µ. Then ` is assigned

to s3, otherwise ` blocks at s3. Notice that i1 and i2 now blocks k at s1, contradicting the

suitability of µ.

Case 2.1: k is assigned to s2 in µ, and j is assigned to s1. Then ` is assigned to s3,

otherwise ` blocks at s3. By feasibility, i1 and i2 are unassigned. Notice k blocks at s1,

contradicting the suitability of µ.

Case2.2: k is assigned to s2 in µ, and ` is assigned to s1. By feasibility, i1 and i2 are

unassigned. Then j is assigned to s1, otherwise j blocks at s1. Notice that ` blocks at s3,

contradicting the suitability of µ.

Case 2.3: k is assigned to s2 in µ, and i1 and i2 are assigned to s1. Then j is assigned

to s3, otherwise j blocks at s3. This leaves ` unassigned. Notice that j and ` block i1 and i2

at s1, contradicting the suitability of µ.
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Similarly, suppose that we allow for families of size larger than two and require that

they cannot be separated. The following example shows that the natural extension of our

algorithm that accounts for three siblings may not result in a suitable assignment.

Example 7 Let I = {i1, i2, j1, j2, j3, k1, k3}, S = {s1, s2}, G = {1, 2, 3}, qs1 = (2, 1, 1), and

qs2 = (1, 1, 1). For each hx ∈ I, let γ(hx) = x. Let preferences and priorities be as below:

Abusing notation, we express Pi1 = Pi2 as Pi, and similarly so for other sibling pairs/triples.

Pi Pj Pk �1
s1
�2
s1
�3
s1
�1
s2
�2
s2
�3
s2

s2 s1 s1 i1 i2 j3 j1 j2 j3

s1 s2 j1 j2 k3 k1 i2 k3

k1 i1

Let . be such that g1 . g2. We follow the steps for the SDA., and extend the algorithm

naturally when the three siblings appear. We skip Step 1.0.

Step 1.1: j1 and k1 apply to s1, and i1 applies to s2. Since it is not feasible to assign

{j2, k2} to grade 2 at s1, school s1 rejects the lowest priority student in {j1, k1} according
to �1

s1
which is k1.

Step 1.2: k1 applies to s2. Since it is not feasible to assign {i2, k2} to grade 2 at s2,

school s2 rejects the lowest priority student in {i1, k1} according to �1
s2
which is i1.

Step 1.3: i1 applies to s1. Since it is not feasible to assign {i2, j2} to grade 2 at s1, j1

is rejected.

The �nal assignment is µi1 = µi2 = s1, µk1 = µk2 = s2, and µj1 = µj2 = µj3 = ∅.
Note that we keep in the �sequential� nature of SDA. by only using �1

s1
and �1

s2
at Step

1. The only extra comparison required is at Step 1.1 and Step 1.3, which have �reasonable�

rejections in the spirit of SDA.. Since it is feasible for k1 and k2 attend s1, this assignment

is blocked.

Appendix B

For each school s, we de�ne the sequential choice function of s. Each school s considers

grades sequentially according to a precedence order . where g . g′ means grade g will be
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processed before grade g′. We denote this choice function with C.
s and for any given set of

contracts Y , the chosen set is calculated as follows:

Step 0: Let Y 1 = Ys. Let gk . gk+1 for all k ∈ {1, 2, ..., |G| − 1}. Let R.
s(Y ) = C.

s (Y ) = ∅.
Let q̄gks = qgks for all k ∈ {1, 2, ..., |G|}.

Step 1: Grade g1 Selection

(Type Determination) For each k > 1, let ak = i(Y 1) ∩ i(Y g1) ∩ i(Y gk).

(Downstream Feasibility) If |ak| > q̄gks , then we add ∪g∈γ(i)(i, s, g)∩Y 1 to R.
s(Y ) such

that |{j ∈ ak|j �g1
s i}| ≥ q̄gks .

(Selection from Remaining) Let Ȳ 1 = (Y 1 ∩ Y g1)\R.
s(Y ). Let Cg1

s (Y ) = Ȳ ⊆ Ȳ 1 such

that |Ȳ | = min
{
Ȳ 1, q̄g1

s

}
, and for each (̄i, i′) ∈

(
i(Ȳ ) ∩ Ig1

)
×
(
i(Ȳ 1) ∩ Ig1 \ i(Ȳ )

)
,

ī �g1
s i′. Let Rg1

s (Y ) = (Y 1 ∩ Y g1) \ Cg1
s (Y ). Add Cg1

s (Y ) ∪ (∪i∈i(Cg1s (Y ))(Yi ∩ Ys)) to

C.
s (Y ) and add Rg1

s (Y ) ∪ (∪i∈i(Rg1s (Y ))(Yi ∩ Ys)) to R.
s(Y ) .

(Update Remaining Students and Capacities) Let Y 2 = Y 1 \ (C.
s (Y ) ∪ R.

s(Y )) and

q̄gks = qgks − |C.
s (Y ) ∩ Y gk | for all k > 1.

In general;

Step k̄: Grade gk̄ Selection

(Type Determination) For each k > k̄, let ak = i(Y k̄) ∩ i(Y gk̄) ∩ i(Y gk).

(Downstream Feasibility) If |ak| > q̄ks , then we add ∪g∈γ(i)(i, s, g) ∩ Y k̄ to R.
s(Y ) such

that |{j ∈ ak|j �s i}| ≥ q̄gks .

(Selection from Remaining) Let Ȳ k̄ =
(
Y k̄ ∩ Y gk̄

)
\R.

s(Y ). Let C
gk̄
s (Y ) be the Ȳ ⊆ Ȳ k̄

such that |Ȳ | = min
{
Ȳ k̄, q̄

gk̄
s

}
, and for each (̄i, i′) ∈

(
i(Ȳ ) ∩ Igk̄

)
×
(
Igk̄ \ i(Ȳ )

)
,

ī �gk̄s i′. Let R
gk̄
s (Y ) = (Y k̄ ∩ Y gk̄) \ Cgk̄

s (Y ). Add C
gk̄
s (Y ) ∪ (∪

i∈i(C
gk̄
s (Y ))

(Yi ∩ Ys)) to

C.
s (Y ) and add R

gk̄
s (Y ) ∪ (∪

i∈i(R
gk̄
s (Y ))

(Yi ∩ Ys)) to R.
s(Y ) .

(Update Remaining Students and Capacities) Let Y k̄+1 = Y k̄ \ (C.
s (Y ) ∪R.

s(Y )) and

q̄gks = qgks − |C.
s (Y ) ∩ Y gk | for all k > k̄.
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The process concludes after Step |G|, and we arrive at C.
s (Y ).

Proof of Proposition 2. We start with LAD. Consider any subset of contracts Y ⊆ X.

By the de�nition, if Ci(Y ) 6= ∅, then si(Y ) 6= ∅ and |Ci(Y )| = |γ(i)|. Hence, for any Y ⊂ Y ′

si(Y
′) 6= ∅ and |Ci(Y ′)| = |γ(i)|. That is, the parents' choice functions satisfy LAD.

Next, we show that Ci is not substitutable via example. Let i be a parent with s Pi s
′ and

γ(i) = {1, 2}. Let Y = {(i, s, 1), (i, s′, 1), (i, s′, 2)} and Y ′ = Y ∪ {(i, s, 2)}. Then, Ci(Y ) =

{(i, s′, 1), (i, s′, 2)} and Ci(Y ′) = {(i, s, 1), (i, s, 2)}. Hence, parent i's choice function is not

substitutable.

Proof of Proposition 3. We prove by example. Let G = {1, 2}. Let I1 = {i, k}
and I2 = {i.j}. Let k �1

s i and i �2
s j. For each g ∈ {1, 2} qgs = 1. Let 1 . 2. Let

Y = {(i, s, 1), (i, s, 2)}, Y ′ = Y ∪{(k, s, 1)}, Y ′′ = Y ∪{(j, s, 2)}, and Y ′′′ = Y ′′∪{(k, s, 1)}.
Then C.

s (Y ) = {(i, s, 1), (i, s, 2)}, C.
s (Y ′) = {(k, s, 1)}, C.

s (Y ′′) = {(i, s, 1), (i, s, 2)} and

C.
s (Y ′′′) = {(k, s, 1), (j, s, 2)}. Since Y ⊂ Y ′ and |C.

s (Y )| > |C.
s (Y ′)|, C.

s does not satisfy

LAD. Since Y ′′ ⊂ Y ′′′, (j, s, 2) /∈ C.
s (Y ′′) and (j, s, 2) ∈ C.

s (Y ′′′), Cs is not substitutable.

Proof of Proposition 4. We start with LAD. Let Ī ⊂ J̄ ⊆ Ig. We compare Dg,q̂
s (Ī) and

Dg,q̂
s (J̄). We consider the parents in Ī and J̄ who are not rejected in Step 1 of Dg,q̂

s . By

de�nition, the number of parents who are not rejected in J̄ ∩ Ig′ is weakly more than Ī ∩ Ig′

for all g′ ∈ G\{g}. Hence, the number of parents considered in Step 2 is weakly more when

we consider J̄ compared to Ī. Then, |Dg,q̂
s (Ī)| ≤ |Dg,q̂

s (J̄)|.
Next, we show subsitutability. Consider any subset of students Ī ⊂ Ig. Let i /∈ Dg,q̂

s (Ī).

Then, when Dg,q̂
s (Ī) is considered i is rejected in either Step 1 or Step 2. Suppose i is

rejected in Step 1. Then, we consider Ds,q̂
s (Ī ∪ {j}) where j /∈ Ī. By de�nition, there are at

least q̂g
′
parents in (Ī ∪ {j})∩ Ig′ with higher priority than i ∈ Ig′ according to �gs. Hence,

i /∈ Ds,q̂
s (Ī ∪ {j}). Now, suppose i is rejected in Step 2. Then, all parents in Ds,q̂

s (Ī) have

higher priority than i. By LAD and the de�nition, there will be at least q̂g parents in Step

2 with higher priority than i when we consider Ī ∪ {j}. Hence, i /∈ Ds,q̂
s (Ī ∪ {j}).

Proof of Theorem 3. Let g1 . g2 . · · · . gn. First, observe that in the many-to-one
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subproblem consisting of Ig1 , by substitutability of each school's choice function Dg1,q
s and

Hat�eld and Milgrom (2005), the assignment µg1 is not blocked by any contract set that

involves parents only in Îg1 . SCO. is clearly individually rational.

Stability : Suppose by contradiction that there is Z ⊆ X such that Z blocks SCO..

Without loss of generality, let the .-earliest grade in g(Z) be g1. Since for each s ∈ S, C.
s

chooses grade 1 contracts (and siblings) �rst, Z ′ = Zg1 ∪{(i, s, g) ∈ Z : i ∈ i(Zg1)} is chosen
in Step 1 for C.

s . So Z
′ also blocks SCO..

This implies that in the many-to-one subproblem at grade 1 i(Z ′) blocks µg1�a contra-

diction.

Strategy-proofness : For each g ∈ G, let Îg = {i ∈ I : γ(i) = g}. Observe that each

parent i is only involved in the construction of SCO. at her earliest grade γ(i).

At the processing of grade γ(i), i's report does not a�ect the assignment of µg, . . . , µγ(i)−1�

i can only a�ect µγ(i). By substitutability and LAD of each school's choice function Dg,q
s

and Hat�eld and Milgrom (2005), the cumulative o�er process mechanism is strategy-proof

and i cannot bene�t by misreporting.
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