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Abstract

A mechanism is strategy-proof if agents can never profitably manip-
ulate it, in any state of the world; however, not all non-strategy-proof
mechanisms are equally easy to manipulate - some are more “obviously”
manipulable than others. We propose a formal definition of an obvious
manipulation and argue that it may be advantageous for designers to
tolerate some manipulations, so long as they are non-obvious. By do-
ing so, improvements can be achieved on other key dimensions, such as
efficiency and fairness, without significantly compromising incentives.
We classify common non-strategy-proof mechanisms as either obviously
manipulable (OM) or not obviously manipulable (NOM), and show that
this distinction is both tractable and in-line with empirical realities
regarding the success of manipulable mechanisms in practical market
design settings.
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1 Introduction

When designing mechanisms for allocating resources, such as in auctions,
matching, or other assignment problems, there is a long and rich literature
studying strategy-proof direct mechanisms, which are often seen as desirable
because an agent need not need forecast what they expect others to do in order
to determine their own optimal strategy.1 Indeed, strategy-proof direct mech-
anisms have played a large role in many practical market design applications,
including auctions, school choice (Abdulkadiroğlu and Sönmez, 2003), medical
residency matching (Roth and Peranson, 1999), and kidney exchange (Roth
et al., 2004), among others. At the same time, imposing strategy-proofness
can be costly, and allowing for non-strategy-proof (or, manipulable) mecha-
nisms widens the space of possibilities. While some agents may benefit by
lying in a manipulable mechanism, the ease of recognizing and enacting such
manipulations may vary across mechanisms. By using mechanisms that, while
not strategy-proof, are not easy to manipulate, designers may be able to im-
prove outcomes on other important dimensions, such as efficiency. The goal of
this paper is to provide a simple and tractable method for determining when
a mechanism is easy to manipulate.

To motivate our project, consider two widely-used, manipulable mecha-
nisms. The first is the Boston mechanism for school choice. Under this mech-
anism, a student loses her priority at a school unless she ranks it first. There-
fore, if a student has high priority at a school that is her true second choice,
she may be better off by lying and ranking this school first. By doing so, she
can guarantee being assigned to it, whereas if she told the truth, she risks los-
ing it to others who ranked it higher, and may end up at her third (or worse)
choice. Not only is the Boston mechanism manipulable in the formal sense of
failing to be strategy-proof, but further, the relevant manipulations are also
very easy to identify and enact. Indeed, this has been discovered and used
by both parents and policymakers. For instance, Pathak and Sönmez (2008)
report on a well-organized parent group in Boston advising their members as
follows:

One school choice strategy is to find a school you like that is under-
subscribed and put it as a top choice, OR, find a school that you
like that is popular and put it as a first choice and find a school
that is less popular for a “safe” second choice.

1This literature goes back to at least Vickrey (1961), who writes that in a second-price
auction “Each bidder can confine his efforts and attention to an appraisal of the value the
article would have in his own hands, at a considerable saving in mental strain and possibly
in out-of-pocket expense”.
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Using data from magnet school assignment in Wake County, NC, which used a
version of the Boston mechanism, Dur et al. (2018) present empirical evidence
that many students do in fact act strategically in line with the above advice.
Indeed, one of the primary objections to the Boston mechanism is the ability
of strategic students, who recognize the potential manipulations, to profit at
the expense of non-strategic students, who just report truthfully (Pathak and
Sönmez, 2008). This has been a leading factor in the abandonment of the
mechanism in some jurisdictions.2

On the other hand, consider the (doctor-proposing) Deferred Acceptance,
or DA, mechanism, which is used every year by the National Resident Match-
ing Program (NRMP) to assign thousands of newly-graduated doctors to resi-
dency training positions in hospitals across the US (Roth and Peranson, 1999),
as well as around the world. While this mechanism is often lauded for being
strategy-proof for the doctors, it is also well-known that it is not strategy-proof
for the hospitals. However, while it is possible for hospitals to manipulate their
preferences and obtain a better assignment in some states of the world, to do
so successfully is difficult, and requires a detailed understanding of the me-
chanics of the mechanism and of the preferences of the other agents. Without
such knowledge, it is very possible that attempting such a manipulation may
backfire: the manipulating hospital may not be assigned a doctor it would be
happy to employ. This is in stark contrast to the Boston mechanism, where a
student can guarantee a spot at her second-choice school, and thereby surely
avoid a potentially worse outcome from reporting truthfully.

These examples highlight that some mechanisms provide opportunities for
manipulation that are much easier for agents to recognize and execute suc-
cessfully than others; in other words, some manipulations are more “obvious”
than others. The main contribution of this paper is a formalization of the
word “obvious”, which we then use to classify non-strategy-proof mechanisms
as either obviously manipulable or not obviously manipulable.

For a given agent, a report θ′ is a manipulation if the agent ever does
strictly better reporting θ′ over reporting her true type, θ. In this case, truth-
ful reporting cannot be a dominant strategy. We define θ′ to be an obvious
manipulation if either the best possible outcome under θ′ is strictly better than

2Though the use of the Boston mechanism has been abandoned in some places (includ-
ing its namesake city and a total legislative ban in England), it still remains one of the most
popular assignment mechanisms overall. Since so many school districts use an “obviously”
manipulable mechanism, one might wonder whether the degree of manipulability is an im-
portant consideration for school districts. Pathak and Sönmez (2013) provide an extensive
discussion on this issue, as well as a comprehensive list of authorities that have used (and
abandoned) such mechanisms, past and present.
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the best possible outcome under θ, or the worst possible outcome under θ′ is
strictly better than the worst possible outcome under θ. Clearly an obvious
manipulation is also a manipulation; however, we argue that an obvious ma-
nipulation is identifiable to agents in a way that non-obvious manipulations
are not.3

To formalize the idea that obvious manipulations are easier to identify, we
consider an agent who is not fully informed (or does not fully understand) how
a mechanism φ is defined, but instead is only able to determine the set of possi-
ble outcomes from any given strategy; mathematically, she knows the range of
φ conditional on her own report, but not the full function itself, state-by-state.
For example, in the context of school assignment, this could be a neighbor-
hood parent group that does not fully understand (or has not been told) the
assignment algorithm being run but has kept track of what preferences par-
ents have submitted and what the resulting assignments were. Theorem 1
demonstrates that obvious manipulations are exactly the manipulations that
can be identified by such an agent. This is our theoretical foundation of the
term “obvious”: even an agent who does not fully know how the mechanism
is defined can deduce that the mechanism can be manipulated.

Both our formal definition and our behavioral characterization are inspired
by the influential paper of Li (2017) on obvious strategy-proofness (OSP). Li
(2017) starts from the observation that real-world agents are often unable to
engage in the intricate, contingent reasoning necessary to fully understand the
implications of a given course of action on a state-by-state basis (mathemat-
ically, in our context this would be equivalent to knowing the entire function
φ).4 Formally, Li (2017) also considers agents who know only the set of pos-
sible outcomes from any given strategy, which can be understood as either a
lack of ability to contingently reason, or equivalently as agents who are given
only a partial description of the mechanism. Obviously dominant strategies
are then those that are recognizable as dominant by such agents. While robust
when they exist, very few mechanisms will have obviously dominant strate-
gies; indeed, almost no normal-form games will be obviously strategy-proof.

3Implicit in our construction is the assumption that truthfully reporting your type is a
focal strategy for an agent. Focal strategies trace back to Schelling (1980); and there is both
experimental (e.g., Featherstone and Niederle, 2016; Pais and Pintér, 2008) and theoretical
(e.g., Pathak and Sönmez, 2008; Bochet and Tumennasan, 2017; Dutta and Sen, 2012;
Baillon, 2017) support for truth-telling as a focal strategy. For example, in interpreting
the results of their school choice experiment, Featherstone and Niederle (2016) write “A
plausible explanation is that truth-telling holds special sway as a focal strategy”.

4Indeed, there is increasing evidence that many people have difficulties with hypothetical
reasoning even in single-agent decision problems (Charness and Levin, 2009; Esponda and
Vespa, 2014), let alone environments with strategic interactions among many agents.
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Many real-world applications like those we are concerned with (school choice,
NRMP) have tens of thousands of agents, making it impractical to run an
extensive-form (OSP) mechanism,5 which motivates our restriction to direct
mechanisms. Even in this context, strategy-proofness itself is limiting, and
so, rather than strengthen it, our approach is to relax strategy-proofness and
instead look for mechanisms that are not obviously manipulable.

After our behavioral characterization, we apply our definition to several
canonical market design environments, starting with school choice. We first
formalize the above discussion regarding the Boston mechanism and show it
is indeed obviously manipulable (Proposition 1). The main alternative to the
Boston mechanism, the (student-proposing) DA mechanism, is strategy-proof
for the students, but may produce Pareto inefficient assignments. To correct
this, many new mechanisms that Pareto improve on DA have been proposed.
While it is known that any such mechanism is manipulable (Abdulkadiroğlu
et al., 2009; Kesten, 2010; Alva and Manjunath, 2017), we show a striking
result: while they may be manipulable, any mechanism that Pareto dom-
inates DA is not obviously manipulable (Theorem 2). This has particularly
important implications for the efficiency-adjusted deferred acceptance (EADA)
mechanism of Kesten (2010), which has received renewed attention, as several
recent papers have shown that EADA is the unique Pareto efficient mechanism
that also satisfies natural fairness axioms (Dur et al., 2015; Ehlers and Morrill,
2017; Tang and Zhang, 2017; Troyan et al., 2018). The only shortcoming of
the EADA assignment is its implementation: it is a manipulable mechanism.
However, Theorem 2 implies that EADA is not obviously manipulable, and
thus this may be less likely to be an issue in practice.

After presenting our results for school choice, we discuss several other
canonical market design applications. For two-sided matching, we show that
while DA is manipulable for the receiving side, it is not obviously so (Theorem
3). For multi-unit auctions, we show that first-price/pay-as-bid multi-unit auc-
tions are obviously manipulable (Corollary 2), while the (K+ 1)-price auction
is not (Theorem 4).6 Finally, we consider the classic bilateral trade setting
with one buyer and one seller. We first show directly that double auctions
(Chatterjee and Samuelson, 1983) are obviously manipulable. We then ask
whether there is any NOM mechanism that also satisfies other common de-

5Ashlagi and Gonczarowski (2018), Troyan (2019), Pycia and Troyan (2016), Arribillaga
et al. (2017), and Bade and Gonczarowski (2016) fully characterize obviously strategy-
proof mechanisms in various environments, including matching, voting, and auctions, among
others.

6K denotes the number of identical units to be sold. While strategy-proofness holds for
K = 1 (a second-price auction), the (K + 1)-price auction is manipulable for K > 1.
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sirable properties. Our last result is an impossibility result in the spirit of
Myerson and Satterthwaite (1983): every efficient, individually rational and
weakly budget balanced mechanism is obviously manipulable (Theorem 5).

We stress that in our model, agents have standard preferences over out-
comes, and we make no assumptions about prior probability distributions over
the types or reports of other agents; rather, we presume that the ability of
agents to recognize certain deviations as profitable may vary across mecha-
nisms. Thus, our approach is consistent with the Wilson doctrine (Wilson,
1987), in the sense that determining whether a mechanism is obviously ma-
nipulable requires no assumptions about common knowledge or an agents’
prior beliefs. For instance, in the bilateral trade setting, it is difficult for the
buyer to determine her optimal bid in a double auction mechanism, because
it is highly sensitive to his beliefs about the seller’s ask (and vice-versa). Our
definition captures this difficulty by classifying this mechanism as obviously
manipulable.7

A common alternative approach to relaxing strategy-proofness in market
design (without moving all of the way to Bayesian incentive compatibility) re-
lies on large markets. Immorlica and Mahdian (2005) and Kojima and Pathak
(2009) show that the incentives to manipulate DA vanish as the size of the
market approaches infinity. Azevedo and Budish (2018) define a related con-
cept of strategy-proofness in the large (SPL). While similar in motivation, our
approach is distinct in several respects. Most notably, we require no assump-
tions on how preferences are drawn or agent beliefs; further, our results hold
for markets of any size, and not just in the limit.8 Another recent strand of
literature tries to quantify a mechanism’s manipulability using particular met-
rics. This includes Carroll (2011), who defines a mechanism’s susceptibility to
manipulation as the maximum cardinal utility any agent can gain from lying,
and Pathak and Sönmez (2013), who use a profile-counting metric to define
one mechanism as “more manipulable” than another if, for any preference pro-
file where the latter is manipulable for some agent, the former is as well. We
do not require any assumptions on cardinal preferences, nor do we attempt

7Our results thus provide a contrast to the recent literature on mechanism design with
maximin expected utility agents (MEU, Gilboa and Schmeidler, 1989), which also has agents
comparing worst-case outcomes under any two reports. For instance, De Castro and Yan-
nelis (2018) claim that ambiguity can be used to “solve” the impossibility of Myerson and
Satterthwaite (1983) (see also Wolitzky, 2016), whereas our Theorem 5 reinforces Myerson
and Satterthwaite’s negative result.

8Regarding DA in particular, also related are Barberà and Dutta (1995) and Fernandez
(2018), who define particular classes of strategies (protective strategies and regret-free truth-
telling, respectively), and use them to explain truthful reporting under DA.
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to rank mechanisms by their degree of manipulability, but instead want to
eliminate all obvious manipulations.

In summary, we believe that imposing only non-obvious manipulability can
be a useful design objective in many settings, as it will allow improvements
on other important dimensions such as fairness or efficiency, while eliminating
the most clear opportunities for manipulation. Obvious manipulations require
less information to recognize, and are less risky (in the sense of downside risk)
than telling the truth. Further, from a pragmatic standpoint, our classification
is tractable and is inline with empirical realities with regard to successful
practical market design across a range of applications. This suggests that not
only is obvious manipulability capturing an important feature of incentives in
existing mechanisms, but can also be applied when considering implementing
new mechanisms that have not yet been used in practice.

2 Definitions

We consider an environment with a finite set of N agents, I = {i1, . . . , iN},
and a finite set of outcomes, X. Agents have preferences over outcomes which
we index by types θi ∈ Θi, where Θi is the set of possible types for agent i.
The function ui(x; θi) denotes agent i’s utility for outcome x when his type is
θi (note that values are private).9 We focus on direct mechanisms. Letting
ΘI = ×i∈IΘi, a (direct) mechanism is a function φ : ΘI → X that maps
type profiles to outcomes.10 When convenient, we will use the notation xi
and φi(θ) to denote i’s individual allocation (e.g., in school choice, φ(θ) = x
is the entire assignment of all students to schools when the type profile is θ,
while φi(θ) = xi is i’s school and, with slight abuse of notation, we sometimes
write ui(φi(θ); θi) ≡ ui(φ(θ); θi) and ui(xi; θi) ≡ ui(x; θi) as i’s utility for school
φi(θ) = xi when of type θi).

9While we use utility function notation ui(·; ·), this is only for presentation and read-
ability. For all of our results (including the applications with transfers below), only ordinal
preferences over outcomes are relevant, and the utility functions should not be interpreted
as von Neumann-Morgenstern utilities (indeed, we think the lack of reliance on probabil-
ity distributions is one of the advantages of our approach). Further, since each θi can be
identified with an ordinal ranking over X and X is finite, Θi is finite as well.

10While our main ideas can also be applied more generally, the restriction to private
values and direct mechanisms is an important class of problems motivated by the real-world
applications we consider in the following sections where such mechanisms are commonly
used, such as school choice (Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013),
hospital-resident matching (Roth and Peranson, 1999), and centralized college admissions
(Balinski and Sönmez, 1999; Chen and Kesten, 2017), among others.
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An important concern when choosing a mechanism is the incentives given
to the agents to report their preferences truthfully. Formally, mechanism φ is
strategy-proof if ui(φ(θi, θ−i); θi) ≥ ui(φ(θ′i, θ−i); θi) for all i, all θi, θ

′
i ∈ Θi,

and all θ−i ∈ Θ−i. While desirable as an incentive property, strategy-proofness
is also a demanding condition, and may restrict a mechanism designer’s ability
to achieve other desirable goals. Indeed, many practical market design settings
use non-strategy-proof, or manipulable, mechanisms (see the Introduction). It
is these mechanisms that will be the focus of our paper.

Definition 1. Report θ′i is a (profitable) manipulation of mechanism φ for
agent i of type θi if there exists some θ−i ∈ Θ−i such that ui(φ(θ′i, θ−i); θi) >
ui(φ(θi, θ−i); θi). If some type of some agent i has a profitable manipulation,
then we say that mechanism φ is manipulable.

Note that for a mechanism to be classified as manipulable, there must
simply exist some profile of the other agents, θ−i, such that when they report
θ−i, agent i prefers to report θ′i over the truth θi. However, in other instances,
reporting θ′i may actually be worse for agent i than reporting truthfully. Thus,
to any agent who must report her own type before she knows the types of
others, it may be very unclear whether such a manipulation will be profitable
in practice. One approach is to assume, in addition to her payoff type, each
agent also has a belief type, and uses this to evaluate her different options and
choose the one that maximizes her (expected) utility.11 However, extensive
calculations of this type may be difficult for real word agents. In defining
obvious dominance, for example, Li (2017) considers an agent who “knows
all the possible outcomes that might result from [a particular] strategy...[but]
does not know the possible outcomes contingent on some unobserved event”
(emphasis in the original), and looks for mechanisms where all possibilities
from one strategy are weakly better than all possibilities from any other. At
the same time, calculating worst (or best) possible outcomes is typically much
simpler than calculating all possible outcomes; further, even if it is possible to
do the latter, it is still unclear how to compare the resulting sets of possibilities,
at least without making assumptions on prior distributions and beliefs.

Motivated by these observations, and by the examples given in the intro-
duction, we look for a weakening of strategy-proofness that does not require
the agents to engage in extensive contingent reasoning or to calculate expec-
tations (and therefore is not sensitive to assumptions on the agents’ beliefs).

11While not strictly necessary (see, e.g., Bergemann and Morris, 2005) applied game
theory models often impose the further restriction that each agent’s payoff type is drawn
from Θ according to some prior distribution that is common knowledge.
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Rather, we focus on comparing the best/worst cases, which we think are both
simpler and particularly salient. In the next section, we will motivate this defi-
nition more formally by providing a characterization of obvious manipulations
as those that can be recognized by cognitively limited agents.

Definition 2. Mechanism φ(·) is not obviously manipulable (NOM) if,
for any profitable manipulation θ′i, the following are true:

(i) minθ−i
ui(φ(θ′i, θ−i); θi) ≤ minθ−i

ui(φ(θi, θ−i); θi)

(ii) maxθ−i
ui(φ(θ′i, θ−i); θi) ≤ maxθ−i

ui(φ(θi, θ−i); θi)

If either (i) or (ii) does not hold for some manipulation θ′i, then θ′i is said
to be an obvious manipulation for agent i of type θi, and mechanism φ is
said to be obviously manipulable (OM).

Intuitively, a manipulation θ′i is classified as “obvious” if it either makes
the agent strictly better off in the worst case (i.e., minθ−i

ui(φ(θ′i, θ−i); θi) >
minθ−i

ui(φ(θi, θ−i); θi)) or it makes the agent strictly better off in the best case
(i.e., maxθ−i

ui(φ(θ′i, θ−i); θi) > maxθ−i
ui(φ(θi, θ−i); θi)). If either (i) or (ii) is

violated for a manipulation θ′i, then we say θ′i is a non-obvious manipula-
tion. In other words, a manipulation is non-obvious if the best and worst case
outcomes from truth-telling are always weakly better.

3 Characterization

In this section, we provide a characterization of obvious manipulations in the
spirit of the characterization of obviously strategy-proof mechanisms presented
in Li (2017).12 Li (2017) considers an agent who is aware of the possible out-
comes from her choices, but who is unable to engage in contingent reasoning.
This agent is aware of the experiences that a mechanism will generate, and
at each information set, knows the set of outcomes that can result from a
strategy. If an agent cannot distinguish between two mechanisms when armed
only with this information, Li (2017) defines the two mechanisms to be i-
indistinguishable, and shows that an agent who cannot distinguish between
i-indistinguishable mechanisms is able to determine that a strategy is weakly
dominant if and only if the strategy is obviously dominant.

We consider the same cognitively limited agent as in Li (2017). As we work
only with direct mechanisms, our definitions are correspondingly simpler. In

12We thank an anonymous referee for suggesting the analysis in this section.
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particular, in a direct mechanism, the set of experiences the mechanism can
generate is the range of possible outcomes. Recall that we use xi to denote i’s
individual allocation under outcome x and φi(θ) to be i’s individual allocation
under mechanism φ. Formally, given an agent i, strategy θ′i, and mechanism
φ, we denote the range of possible outcomes from strategy θ′i by πφi (θ′i) :=
{xi|∃θ−i s.t. φi(θ

′
i, θ−i) = xi}. Mechanisms φ and φ′ are i-indistinguishable

if for every θ′i ∈ Θi, π
φ
i (θ′i) = πφ

′

i (θ′i).
Our first theorem shows that a mechanism φ has an obvious manipula-

tion if and only if, for every mechanism ψ that is i-indistinguishable from φ,
the corresponding manipulation is profitable. One interpretation of this the-
orem is that even cognitively limited agents who may not fully understand
the mechanism they are playing will still be able to recognize manipulations
if they are obvious. Another interpretation is that the set of obvious manipu-
lations are exactly those that can be identified by agents who are only given
partial information about the mechanism that will be run, in the sense that
they know the range of possible outcomes from any given report. For instance,
in a school choice context, parent groups may have historical data that keeps
track of the preferences parents have submitted in previous years, and what
their resulting assignments were. Such parents will be able to identify obvious
manipulations, even without knowing (or fully understanding) exactly what
mechanism is being used.

For our characterization, we impose a mild restriction on the model to avoid
trivialities. The assumption we impose is a richness condition that the type
spaces are “large enough”. Formally, type space Θ is rich if for any agents i and
j, |Θj| ≥ | {xi|x ∈ X} |.13 This condition is easily satisfied in the applications
we consider in the next section. For example, in school assignment, each
student has (|S| + 1)! possible types (each way of ranking each school and
being unassigned is a distinct type), but for an individual agent, there are
only |S|+ 1 possible allocations (i.e., schools she may be assigned).

Theorem 1. Suppose there are at least three agents and the type space is rich.
For any i, θi, θ

′
i, it holds that θ′i is an obvious manipulation for θi under φ

if and only if for every ψ that is i-indistinguishable from φ, θ′i is a profitable
manipulation for θi.

The intuition behind the equivalence between an obvious manipulation
and the manipulations that an agent with limited information can recognize is

13The RHS is the number of possible individual allocations for agent i. For instance,
in school assignment, each agent may be assigned to one of |S| possible schools or remain
unassigned, and so |{xi|x ∈ X}| = |S|+ 1 for all i.
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θ θ′1 θ θ′2 θ θ′3

Figure 1: When, by observing just the range of outcomes, can we determine
if one strategy weakly dominates another? Consider an agent who ranks out-
comes A � B � C � D � E. For this agent, it is not possible to know if θ
weakly dominates θ′1; or if θ weakly dominates θ′2 (the inputs that resulted in
assignment C could now result in either B or D); however, we are certain that
θ does not weakly dominate θ′3.

provided in Figure 1. Here, an agent ranks the outcomes A � B � C � D �
E, and the range of possible outcomes are given for various reports. In the
first comparison, between θ and θ′1, the agent knows that θ′1 is sometimes worse
than θ, but she cannot tell if it is sometimes better. When there is a “hole”
in the range, such as when comparing θ to θ′2, the agent cannot determine if
that outcome has been replaced with something better or worse. Only in the
last comparison, θ versus θ′3, can the agent be certain that the alternative, θ′3,
is sometimes strictly better than θ. There is some state of the world where
she receives D after submitting θ, and whenever this occurs, she does strictly
better submitting θ′3 instead of θ.

Proof of Theorem 1. Suppose θ′i is an obvious manipulation for θi
under mechanism φ. Denote i’s best possible outcome under any mecha-
nism φ′ when reporting θ′i by Bφ′

i (θ′i). We demonstrate the result for the
case where ui(B

φ
i (θ′i); θi) > ui(B

φ
i (θi); θi) (in words, when her best possible

outcome from submitting θ′i is strictly preferred to her best possible out-
come from submitting θi). Consider any i-indistinguishable mechanism φ′,

which is to say that πφi (θ′i) = πφ
′

i (θ′i) for all θ′i (including θi). Note that in

particular, this implies that Bφ
i (θi) = Bφ′

i (θi) and Bφ
i (θ′i) = Bφ′

i (θ′i). Since

πφi (θ′i) = πφ
′

i (θ′i), there exists a θ−i such that φ′i(θ
′
i, θ−i) = Bφ

i (θ′i) = Bφ′

i (θ′i).
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By definition, φ′i(θ) ∈ πφ
′

i (θi) and ui(B
φ′

i (θi); θi) ≥ ui(φ
′
i(θ); θi). Therefore,

ui(B
φ
i (θ′i); θi) > ui(B

φ
i (θi); θi) (since θ′i is an obvious manipulation under φ) and

Bφ
i (θi) = Bφ′

i (θi) and Bφ
i (θ′i) = Bφ′

i (θ′i) (since φ and φ are i-indistinguishable),

and so we have ui(B
φ′

i (θ′i); θi) > ui(B
φ′

i (θi); θi) ≥ ui(φ
′
i(θ); θi), and it follows

that ui(φ
′
i(θ
′
i, θ−i); θi) > ui(φ

′
i(θ); θi), i.e., θ′i is a profitable manipulation for

θi under φ′. A symmetric argument establishes that when the worst outcome
(under φ) from θ′i is strictly better than the worst outcome under θi, then θ′i
is a profitable manipulation of θi for every i-indistinguishable mechanism.

For the reverse direction, we prove the contrapositive. Fix a mechanism
φ, an agent i, a type θi, and an alternative report θ′i such that θ′i is not
an obvious manipulation of θi. We will construct a mechanism φ′ that is i-
indistinguishable from φ such that θ′i is not a profitable manipulation of θi.
First, for any θ′′i 6∈ {θi, θ′i} and any θ−i, let φ′(θ′′i ; θ−i) = φ(θ′′i ; θ−i). Denote

i’s worst possible outcome under mechanism φ′ from submitting θ′i by W φ′

i (θ′i)
and let ā = Bφ

i (θi), ā
′ = Bφ

i (θ′i), a = W φ
i (θi), and a′ = W φ

i (θ′i). Since we have
assumed that θ′i is not an obvious manipulation of θi, ui(ā; θi) ≥ ui(ā

′; θi) and
ui(a; θi) ≥ ui(a

′; θi).
For every a ∈ πφi (θi) fix a (distinct) θa−i. For these values, define φ′i(θi, θ

a
−i) =

a and φ′i(θ
′
i, θ

a
−i) = a′. Similarly, for every a′ ∈ πφi (θ′i) fix a (distinct) θa

′
−i,

such that each θa
′
−i is distinct from all θa

′′
−i previously chosen (including those

chosen for the set πφi (θi)), and for these values, define φ′i(θi, θ
a′
−i) = a and

φ′i(θ
′
i, θ

a′
−i) = a′. Our assumptions that there are at least three agents and

a rich type space ensures that there are sufficiently many distinct profiles
θ−i ∈ Θ−i so that this procedure is well-defined. For every other profile θ−i,
define φ′i(θi, θ−i) = a and φ′i(θ

′
i, θ−i) = a′.

We have constructed φ′ so that πφi (θi) = πφ
′

i (θi) and πφi (θ′i) = πφ
′

i (θ′i). It

is trivially true that for all other types θ′′i , π
φ
i (θ′′i ) = πφ

′

i (θ′′i ). Therefore, φ
and φ′ are i-indistinguishable. Further, by construction, for every profile θ−i,
ui(φ

′
i(θi, θ−i); θi) ≥ ui(φ

′
i(θ
′
i, θ−i); θi). To see this, note that for any θ−i such

that θ−i = θa−i for some a ∈ πφi (θi), we have ui(φ
′
i(θi, θ−i); θi) = ui(a; θi) ≥

ui(a; θi) ≥ ui(a
′; θi) = ui(φ

′
i(θ
′
i, θ−i); θi), where the inequalities come from the

definition of a and a′ and the fact that θ′i is not an obvious manipulation of
θi. Similarly, for any θ−i = θa

′
−i for a′ ∈ πφi (θ′i), we have ui(φ

′
i(θi, θ−i); θi) =

ui(a; θi) ≥ ui(a
′; θi) ≥ ui(a

′; θi) = ui(φ
′
i(θ
′
i, θ−i); θi), where the inequalities

again come from the definition of a and a′ and the fact that θ′i is not an
obivous manipulation of θi. For any other θ−i, φ

′
i(θi; θ−i) = a and φ′i(θ

′
i; θ−i) =

a′, and so, by definition of a and a′ and the fact that θ′i is not an obvious
manipulation of θi, we have ui(φ

′
i(θi; θ−i); θi) ≥ ui(φ

′
i(θ
′
i; θ−i); θi). Therefore,

ui(φ
′
i(θi, θ−i); θi) ≥ ui(φ

′
i(θ
′
i, θ−i); θi) for all θ−i, or, in other words, θ′i is not a
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profitable manipulation of θi in mechanism φ′. �

4 Applications

In this section, we apply the ideas introduced above to several important mar-
ket design environments, including school choice, two-sided matching, auc-
tions, and bilateral trade. In these environments, we use the definition of an
obvious manipulation to classify commonly-used, non-strategy-proof mecha-
nisms as either obviously manipulable (e.g., the Boston mechanism, pay-as-
bid auctions) or not obviously manipulable (e.g., school-proposing DA, uniform
price auctions).

4.1 School Choice

We begin by considering a canonical school choice model, as in the seminal
paper of Abdulkadiroğlu and Sönmez (2003). Let S be a set of schools. Each
school has a capacity qs and a strict priority ranking �s over I ∪ {∅}, where
∅ is interpreted as remaining unmatched (or taking some outside option). A
matching is a function µ : I ∪ S → I ∪ S ∪ {∅} such that (i) µi ∈ S ∪ {∅} for
all i ∈ I (ii) µs ⊂ I and |µs| ≤ qs for all s ∈ S and (iii) µi = s if and only if
i ∈ µs. If µi = ∅, then a student remains unmatched.

In the notation of the previous section, X would be the set of all matchings
and θi would parameterize each agent’s utility function over matchings. How-
ever, in school choice models, it is standard notation to denote an agent’s type
as Pi, where Pi is agent i’s strict ordinal preferences over individual schools in
the set S ∪ {∅}. To be consistent with this literature, in this section, rather
than use utility functions indexed by types θi, we write a Pi b to denote that
school a ∈ S is strictly preferred to b ∈ S by student i. Any s such that
∅ Pi s is said to be an unacceptable school for student i. Also, we let Ri

denote the corresponding weak preference relation,14 and write P = (Pi)i∈I
to denote a profile of preference relations, one for each student. The schools
are not strategic agents, but rather are simply objects to be consumed. The
school priorities and capacities are public information and are known to all of
the students.

We use φ(P ) to denote the matching produced by mechanism φ at pref-
erence profile P , and write φi(P ) for i’s assigned school at matching φ(P ).

14That is, aRib if either aPib or a = b.
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Given a mechanism φ, let

W φ
i (P ′i ) = min

P−i

φi(P
′
i , P−i),

where the minimum is understood to be taken with respect to the true pref-
erences Pi. In other words, W φ

i (P ′i ) is the worst possible school for i in mech-
anism φ when she has true preferences Pi and reports preference P ′i . It is of
course possible to set P ′i = Pi and determine the worst-case outcome when i
reports her true preferences. We define the best possible outcome analogously:

Bφ
i (P ′i ) = max

P−i

φi(P
′
i , P−i),

Using this notation, a manipulation P ′i is an obvious manipulation of mecha-
nism φ (in the sense of Definition 2) if (i) W φ

i (P ′i ) Pi W
φ
i (Pi) or (ii) Bφ

i (P ′i ) Pi
Bφ
i (Pi). If none of these hold for any P ′i , then φ is not obviously manipulable.

We illustrate this definition with two mechanisms that are well-known to
be manipulable: the Boston mechanism and the school-proposing Deferred
Acceptance algorithm.15 Since neither mechanism is strategy-proof, there are
situations for each mechanism where a student may benefit from misreporting.
However, the types of manipulations are very different for the two mechanisms:
the manipulations in the Boston mechanism are obvious, while those for school-
proposing DA are not.

Example 1 (Boston Mechanism). Suppose there are three students, I =
{i, j, k} and three schools S = {a, b, c}. Each school has a capacity qs = 1 for
all s ∈ S. The preferences of the students and the priorities are as follows:

Pi Pj Pk
a b a

b
...

...
c

�a �b �c
k i

...
i j
j k

Let φ = BM denote the Boston mechanism, and BMi(P ) be student i’s
assigned school under preference profile P . If all students report their true
preferences (those in the table), then BMi(P ) = c. However, if i reports
P ′i : b, a, c, then BMi(P

′
i , P−i) = b, which she strictly prefers to c. Thus,

P ′i is a profitable manipulation, and the Boston mechanism is manipulable.
Further, note that if i reports P ′i , then she is guaranteed to receive b for sure,

15Formal definitions of these and other standard school assignment mechanisms can be
found in Appendix A.
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no matter what the other students report, and so this is the worst case from
reporting P ′i : W

BM
i (P ′i ) = b. It is clear that the worst case from the truth

is WBM
i (Pi) = c, and so WBM

i (P ′i )PiW
BM
i (Pi). Therefore, P ′i is an obvious

manipulation.

Example 1 can easily be generalized to markets of any size, and so we have
the following result.

Proposition 1. The Boston mechanism is obviously manipulable.

One easily recognized shortcoming of a “naive” implementation of the
Boston mechanism is that in some rounds, students may end up applying to a
school in round k even if it was filled to capacity in some round k′ < k, thereby
“wasting” their round k application. Several recent papers have considered a
simple and intuitive modification of the Boston mechanism that adapts the stu-
dents’ preferences to prevent them from applying to a school in a given round if
there is no capacity remaining. Dur (2018) shows that in every problem where
this Modified Boston Mechanism (also sometimes referred to as the Adaptive
Boston Mechanism) can be manipulated, the original Boston Mechanism can
also be manipulated but that the converse is not true, and so the Modified
Boston Mechanism is less manipulable than the original Boston Mechanism
in the formal sense introduced by Pathak and Sönmez (2013).16 Note that
Example 1 is the same for the Boston or the Modified Boston mechanism, and
therefore, although the Modified Boston Mechanism is less manipulable than
the Boston Mechanism in the sense of Pathak and Sönmez (2013), it is still
obviously manipulable.

Next, we turn to the school-proposing DA mechanism. School-proposing
DA is also a manipulable mechanism, but the form of the manipulations are
much different from those of the Boston mechanism. This is highlighted by
the following example.

Example 2 (School-Proposing Deferred Acceptance). We let φ = schDA
denote the school-proposing DA algorithm. Suppose there are 3 students I =
{i, j, k} and three schools S = {a, b, c}. Each school has a capacity qs = 1 for
all s ∈ S. The preferences and priorities are as follows:

Pi Pj Pk
a b c
b c a
c a b

�a �b �c
j k i
k i j
i j k

16Various aspects of this mechanism are also considered by Miralles (2009), Mennle and
Seuken (2014), and Harless (2016).
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If all students report their true preferences (those in the table), then schDAi(P ) =
c. If i reports P ′i : a, ∅, then schDAi(P

′
i , P−i) = a, which she strictly prefers

to c, and so P ′i is a profitable manipulation. However, reporting P ′i exposes i
to worse outcomes than reporting her true preferences does. If i submits Pi,
then c is her worst possible assignment, while if i submits P ′i and j ranks a
first, then i will be unassigned, i.e.,

min
P−i

schDAi(Pi) = c Pi ∅ = min
P−i

schDAi(P
′
i ).

Therefore, although P ′i is a profitable manipulation for i, it is not an obvious
manipulation. (While this is only one example of a manipulation that is non-
obvious, Theorem 2 below will imply that schDA is not obviously manipulable
in general.)

Examples 1 and 2 provide an illustration of the different types of manipu-
lations that we will distinguish. Under the Boston mechanism, when a student
ranks her ‘neighborhood school’ first,17 she is guaranteed to be assigned to it.
It is very salient to students who participate in this mechanism that such a
manipulation may be beneficial (see the Introduction). On the other hand, to
identify the truncation strategy in Example 2 as a manipulation is much more
involved. It is far more difficult to identify the precise states in which such a
deviation will be profitable, yet it seems intuitively obvious that listing a truly
acceptable school as unacceptable may result in a worse possible outcome than
if the agent were to submit her true preferences.

The truncation strategy in Example 2 is just one possible deviation, but
we show that this intuition holds more broadly: no profitable manipulation of
schDA is an obvious manipulation. In fact, we show this not only for schDA,
but for a much larger class of mechanisms. To introduce this class, first define
a matching µ as stable if there do not exist any blocking pairs, which are
any (i, s) such that sPiµi and either (i) |µs| < qs or (ii) there exists some
j ∈ µs such that i �s j.18 Further, say that matching µ Pareto dominates
matching µ′ if µiRiµ

′
i for all i ∈ I and µiPiµ

′
i for some i ∈ I. A matching µ is

17More generally, if a student ranks first a school s where she has one of the qs highest
priorities. This is sometimes called a neighborhood school in the literature for convenience,
though priorities need not be determined geographically in general.

18In one-sided matching problems such as school choice, where one side of the market
(e.g., the schools) is viewed as objects to be consumed, rather than actual agents, stability
is often interpreted as an important fairness criterion (see, e.g., Balinski and Sönmez (1999)
and Abdulkadiroğlu and Sönmez (2003)). For expositional purposes and consistency with
prior literature, we stick to the word stability. Additionally, in the next section we will dis-
cuss some two-sided matching applications where stability is given a positive interpretation.
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said to be to be stable-dominating if it is stable or Pareto dominates some
stable assignment. A mechanism φ is said to be stable if φ(P ) is stable for all
preferences profiles P ; similarly, φ is a stable-dominating mechanism if φ(P )
is a stable-dominating assignment for all P .

Why might one be interested in the class of stable-dominating mechanisms?
In school choice settings, stability is usually interpreted as a fairness constraint:
a priority is a “right” to a seat at a school, and if a student with lower priority is
assigned to a school that i desires, then i has a right to protest the allocation,
perhaps by taking legal action (see, e.g., Balinski and Sönmez (1999) and
Abdulkadiroğlu and Sönmez (2003)). While desirable, a drawback of stability
is that it is incompatible with Pareto efficiency; indeed, the student-proposing
DA mechanism, which produces the student-optimal stable assignment (an
assignment that Pareto dominates every other stable assignment), may still
be Pareto inefficient. Because of this impossibility, there has been recent
work looking at weakenings of stability that are normatively justified and also
compatible with efficiency. They include partial fairness (Dur et al., 2015),
legality (Ehlers and Morrill, 2017), essential stability (Troyan et al., 2018),
and weak stability (Tang and Zhang, 2017).

Indeed, this is more than just a theoretical consideration. Using data from
New York City, Abdulkadiroğlu et al. (2009) conduct an exercise in which
they start from the student-optimal stable assignment and Pareto improve it
using Gale’s top trading cycles. They find that over 7% of eighth graders in
their sample could be matched to schools they strictly prefer to their DA as-
signment without making anyone strictly worse off (though of course stability
may be violated at the new assignment). The procedure Abdulkadiroğlu et al.
(2009) use for their exercise is one particular example of a stable-dominating
mechanism; there are of course many others, and because of the potential for
significant efficiency gains, a growing literature has recently begun exploring
the class of stable-dominating mechanisms more fully. This literature includes
Kesten (2010), who introduces the efficiency-adjusted DA (EADA) mecha-
nism; Dur et al. (2015), who introduce the top priority rule; Alcalde and
Romero-Medina (2017), who analyze the deferred acceptance plus top trad-
ing cycles mechanism; and Ehlers and Morrill (2017), who generalize Kesten’s
EADA mechanism to allow for a larger class of choice functions on the school
side.19 While the allocations produced by these mechanisms satisfy many nice

19The Stable Improvement Cycles mechanism introduced in Erdil and Ergin (2008) is also
manipulable and stable-dominating. However, our formal model does not have indifferences
in priorities. In our setting, this algorithm is equivalent to DA. Other stable-dominating
mechanisms include the school-proposing deferred acceptance mechanism (Gale and Shapley,
1962) and deferred acceptance with compensation chains (Dworczak, 2016).
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properties that are explored in the aforementioned papers (most importantly,
efficiency), they all suffer from the same shortcoming with regard to imple-
mentation: none are strategy-proof. This follows from a general impossibility
result of Alva and Manjunath (2017), who show that the only strategy-proof
and stable-dominating mechanism is the student-proposing Deferred Accep-
tance mechanism, which, as already discussed, is not efficient.20 Our Theorem
2, which we state next, sheds a new light on this problem: while any stable-
dominating mechanism will be manipulable, none of the manipulations will be
obvious. This theorem covers all of the efficient mechanisms discussed in this
paragraph (and others), since they are all stable-dominating.21

Theorem 2. Any stable-dominating mechanism is not obviously manipulable.

Proof of Theorem 2. We prove Theorem 2 using a series of lemmas.
We present and prove these lemmas explicitly, as they may be of independent
interest. Lemmas 3 and 4 focus on two particular classes of reports that have
garnered much attention in the literature as focal classes of manipulations, and
show no such report is an obvious manipulation under a stable-dominating
mechanism. These results themselves, as well as Theorem 2, rely crucially
on Lemmas 1 and 2, which we prove first. These lemmas provide a tight
characterization of the worst possible assignment under a stable-dominating
mechanism.

Given a mechanism φ, we define a school s to be a safety school for
a student i with preferences Pi if, for every P−i, we have φi(P ) Ri s. By
definition, a student’s worst possible assignment will be her favorite safety
school. We call a school s an aspirational school if there exists a profile P−i
such that s Pi φi(P ) (i.e., if s is not a safety school). We first note that all
stable-dominating mechanisms have the same worst-case assignment.

Lemma 1. If φ and ψ are both stable-dominating mechanisms, then W φ
i (Pi) =

Wψ
i (Pi) for all i and all Pi.

Proof. Our proof strategy will be to first find the worst-case outcome under
a particular stable mechanism, namely, school-proposing DA. We label this
school w̄. Then, we will show that if φ is a stable-dominating mechanism,

20See Abdulkadiroğlu et al. (2009) and Kesten (2010) for related impossibility results on
strategy-proof Pareto-improvements of student-proposing DA.

21Note that Kesten’s EADA mechanism (and its generalization due to Ehlers and Morrill
(2017)) in particular will be Pareto efficient, stable-dominating, and satisfies all of the weaker
stability definitions cited in the previous paragraph, further strengthening the argument that
its only drawback is lack of strategy-proofness. These results, combined with Theorem 2,
give strong theoretical support for this mechanism.

18



the worst-case under φ is also w̄. Since φ is an arbitrary stable-dominating
mechanism, this will establish the result.

Formally, for a student i with preferences Pi, define:

w̄ = max
Pi

{s : for every P−i, schDAi(P ) Ri s} . (1)

Note that w̄ is a safety school under schDA, and in fact, is i’s most-preferred
safety school. Therefore, w̄ is a lower bound on i’s worst possible assignment
under schDA. To establish that w̄ is, in fact, the worst possible assignment,
we just need to find one profile P−i such that schDAi(P ) = w̄. This is trivial
if w̄ is i’s favorite school.22 Otherwise, let s be the school i ranks just above
w̄ (that is, there is no s′ such that s Pi s

′ Pi w̄). Since s is not a safety school,
there exists a P−i such that s Pi schDAi(P ). However, since w̄ is a safety
school for schDA, schDAi(P ) Ri w̄. Therefore, schDAi(P ) = w̄ (since s was
chosen so that there is no s′ such that s Pi s

′ Pi w̄). This establishes that w̄
is the worst possible assignment under schDA.

Now, define a matching λ = schDA(P ). Note that since φ is stable-
dominating, for any P ′−i, φi(Pi, P

′
−i) Ri schDAi(Pi, P

′
−i) Ri w̄;23 therefore,

w̄ is a lower bound for i under φ. If we can find one profile P ′−i such that
φi(Pi, P

′
−i) = w̄, this will establish that w̄ is in fact the worst possible as-

signment for φ. If λ is not a Pareto efficient matching, then for each j 6= i,
define P ′j := λj, ∅ (where λj = schDAj(P ) and it is understood that ∅, ∅
is replaced by ∅). It is straightforward to verify that schDAi(Pi, P

′
−i) = w̄

and schDAi(Pi, P
′
−i) is Pareto efficient. Since schDA(Pi, P

′
−i) is stable and

Pareto-efficient, it is the student-optimal stable matching, so the lattice of
stable matchings is a singleton. Thus, if φ(Pi, P

′
−i) Pareto dominates any

stable matching, then it Pareto dominates schDA(Pi, P
′
−i), which contra-

dicts the efficiency of schDA(Pi, P−i). Thus φ(Pi, P
′
−i) is stable, and equal

to schDA(Pi, P
′
−i), and in particular, φi(Pi, P

′
−i) = schDAi(Pi, P

′
−i) = w̄.

For a stable-dominating mechanism, the aspirational schools are deter-
mined by Hall’s Theorem (Hall, 1935), which gives a necessary and sufficient
condition for finding a matching that covers a bipartite graph. Intuitively,
consider a student i whose favorite school is a. She is only guaranteed a if
she has one of the qa highest priorities; otherwise, if these students all rank a

22In fact, in this case, for every P−i, schDAi(P ) = w̄.
23It is well known that schDA produces the student-pessimal stable assignment. That is

to say all students weakly prefer any alternative stable assignment to the schDA assignment.
See Roth and Sotomayor (1990) for a complete discussion.
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first, she will receive a worse assignment (under a stable or stable-dominating
assignment). Suppose b is i’s second favorite school. The key observation is
that i may be guaranteed to be assigned to a or b, even if she does not have
one of the qa highest priorities at a nor one of the qb highest priorities at b.
This occurs when there are sufficiently many students ranked higher than her
at both a and b (as these students can only be assigned to one school).

Lemma 2. Let φ be a stable-dominating mechanism and for each school s′, let
Di(s

′) = {j ∈ I : j �s′ i}. Consider a student i with preferences Pi. School s
is a safety school for student i if and only if there exists a set of schools S ′ ⊆ S
such that s′ Ri s for all s′ ∈ S ′ and∑

s′∈S′
qs′ > | ∪s′∈S′ Di(s

′)|. (2)

Proof. We first show the if direction. Fix a school s, and suppose there exists
a set S ′ ⊆ S such that for each s′ ∈ S ′, s′ Ri s and Equation 2 holds. Fix a
profile P−i, and let µ = schDA(P ); specifically, µi is i’s worst possible stable
assignment. Suppose for contradiction that sPiµi. Note that each school
s′ ∈ S ′ is assigned to its capacity (or else µ is not stable). Therefore, by
Equation 2, there must exist a school s′ ∈ S ′ and a student j 6∈ Di(s

′) such
that µj = s′. But i �s′ j (by the definition of Di(s

′)) and s′ Pi µi; therefore,
i and s′ block µ, contradicting the stability of µ. Therefore, µi Ri s. Since φ
is stable-dominating, φi(P ) Ri µi. Therefore, φi(P ) Ri s. The same argument
can be made for any profile P−i, and so s is a safety school.

For the other direction, fix a school s, and assume that for every S ′ ⊆ S
such that s′ Ri s for all s ∈ S ′, Equation 2 fails, i.e., for all such S ′, the
following is true: ∑

s′∈S′
qs′ ≤ | ∪s′∈S′ Di(s

′)|. (3)

In words, for every collection of schools weakly preferred to s, there are more
students ranked higher at one of these schools than the total capacity of all
of these schools. We will show that if Equation 3 holds for any possible set of
schools i weakly prefers to s, then we can fill all of the seats at the preferred
schools with students ranked higher than i. When these students rank their
respective assignments first, it is not possible for i to be placed in a school
weakly preferred to s in any stable assignment (or any Pareto improvement of
one).

The result is an application of Hall’s Theorem. Let U = {s′ : s′ Ri s}.
We define a bipartite graph as follows. For each s′ ∈ U create qs′ vertices{
v1s′ , . . . , v

qs′
s′

}
and define X to be the set of these vertices. Create a vertex for
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each student, and label the set of all such vertices Y . We create a graph by
drawing an edge between student j and vertex vks′ (the kth copy of school s′)
if and only if j �s′ i. In this graph, the neighborhood of any vertex v, denoted
N(v), is the set of vertices it shares an edge with. For a set of vertices W ⊆ X,
N(W ) is defined as ∪w∈WN(w). Note that by definition, there are no edges
between student i and any v ∈ X, and so, N(i) = {∅}. Hall’s Theorem says
the following:

Theorem (Hall 1935). If |W | ≤ |N(W )| for every subset W ⊆ X, then there
exists a matching that entirely covers X.

We will show that in the graph we have constructed, the conditions for
Hall’s Theorem are satisfied. Take some W ⊆ X. Let T be the schools that
have at least one copy in W . Note that for every t ∈ T , tRis. Therefore,
Equation 3 applies, i.e., ∑

t∈T

qt ≤ | ∪t∈T Di(t)|. (4)

By construction, N(W ) = {j : ∃t ∈ T s.t. j �t i}. Written differently,

N(W ) = ∪t∈TDi(t). (5)

For each school t ∈ T , there are at most qt copies of t in W , so |W | ≤
∑

t∈T qt.
This implies

|W | ≤
∑
t∈T

qt ≤ | ∪t∈T Di(t)| = |N(W )|,

where the second inequality follows from Equation 4 and the last inequality
follows from Equation 5. Therefore, by Hall’s Theorem, for each school that i
weakly prefers to s, we can assign every copy of that school to a student ranked
higher than her. Given this vertex cover, we induce a matching λ, defined as
follows: if student j was assigned to a copy of school s′, then we set λj = s′; if
student j was not matched, we set λj = ∅. We then define a preference profile
P−i such that, for every j 6= i, we set Pj := λj, ∅ (where it is understood that
∅, ∅ is replaced by ∅). It should be clear from our construction that under P ,
there is only one stable assignment: each student j 6= i is assigned to λj, while
i is assigned to the school she ranks just below s. It is also clear that this
assignment is Pareto efficient; therefore, any stable-dominating mechanism
must make the same assignment. In particular, s Pi φi(P ), and consequently,
s is not a safety school for i, which is a contradiction.
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The following corollary is immediate from the proof of Lemma 2 and will
be helpful in the proof of the main theorem.

Corollary 1. Let φ be a stable-dominating mechanism, and consider a stu-
dent i with preferences Pi. If s is an aspirational school, then there exists a
preference profile P−i such that φi(P ) = s.

Recall our main goal is to show that stable-dominating mechanisms have
no obvious manipulations. However, there are actually two special classes of
manipulations that have been widely studied in the literature, and thus deserve
particular attention.

The first is a class of strategies called truncations. Formally, P ′i is a trun-
cation of a preference list Pi containing k acceptable schools if P ′i contains
k′ < k acceptable schools and both Pi and P ′i rank the first k′ schools in
an identical manner. Many papers in the literature have focused on trunca-
tion strategies as an interesting and focal class of deviations. For instance,
in searching for advice for participants in hospital-resident matching markets,
Roth and Rothblum (1999) show that in low-information environments, any
profitable deviation of the hospital-proposing DA algorithm is a truncation.24

Lemma 3. Let φ be a stable-dominating mechanism. For any student i, no
truncation strategy is an obvious manipulation of φ.

Proof. Let P ′i be any truncation strategy. It is straightforward to show that
Bφ
i (Pi) is i’s favorite school. Therefore, the best-case outcome cannot be bet-

ter under any alternative strategy. Let w̄ be as defined in Lemma 1 (i’s worst
case assignment under any stable-dominating mechanism). First, suppose P ′i
truncates i’s preferences before w̄. Let P−i be a preference profile such that
DAi(P ) = w̄ (w̄ is the worst possible assignment under DA, so such a pro-
file exists).25 Under DA, when the other students submit preferences P−i, i
runs out of acceptable schools to apply to under preferences P ′−i; therefore,
DAi(P

′
i , P−i) = ∅. In particular, under P ′i , the worst-case assignment un-

der DA is being unassigned. Since φ has the same worst-case assignment as

24Other papers that have analyzed truncation strategies include Roth and Vande Vate
(1991), Roth and Peranson (1999), and Ehlers (2008). Kojima and Pathak (2009) consider a
generalization of truncation strategies they call dropping strategies and show that dropping
strategies are exhaustive when searching for manipulations for agents with a capacity greater
than 1 (in the school choice model here, only the students are strategic, and they have unit
capacity, i.e., they will only be matched to at most one school).

25Note that DA(·) always refers to the student-proposing version of deferred acceptance
(we use schDA(·) to refer to the school-proposing version). Also note, though, that w̄ is
the worst-case under both versions (as well as under any stable-dominating mechanism), by
Lemma 1.
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DA, the worst-case under Pi (w̄) is better than the worst case under P ′i (∅).
Therefore, P ′i is not an obvious manipulation.

Finally, suppose instead that P ′i truncates i’s preferences after w̄. Let P−i
be a preference profile such that DAi(P ) = w̄. Consider an alternative profile
P̂−i where each j 6= i ranks DAj(P ) first and the other schools arbitrarily. By

construction, under profile (P ′i , P̂−i), there is a unique stable assignment; this
stable assignment is Pareto efficient; and under this assignment, i is assigned
to w̄. Since φ is a stable dominating assignment, φi(P

′
i , P̂−i) = w̄. Therefore,

i’s worst possible assignment from reporting P ′i is either w̄ or else a worse
school. Therefore, P ′i is not an obvious manipulation.

Note that truncations do not alter the ordering of any schools above the
truncation point. The second main class of manipulations that we rule out
before completing the proof of Theorem 2 are those that do alter the relative
ordering of some schools. Following Maskin (1999), we say that P ′i is a non-
monotonic transformation of Pi at s if there exists some s′ such that
s Pi s

′, but s′ P ′i s; in other words, in moving from Pi to P ′i , there is some
school s′ that “jumps” over s in i’s ranking. The next lemma shows that under
a stable-dominating mechanism φ, it is never an obvious manipulation for a
student to submit a non-monotonic transformation relative to w̄, her worst
possible assignment under φ.

Lemma 4. Consider any stable-dominating mechanism φ. Let w̄ be i’s worst
possible assignment under preferences Pi. Any non-monotonic transformation
at w̄ is not an obvious manipulation.

Proof. It is straightforward to show that Bφ
i (Pi) is i’s favorite school. There-

fore, the best-case outcome cannot be better under any alternative strategy.
Let w̄ be as defined in Lemma 1 (i’s worst case assignment under a stable-
dominating mechanism). Consider a non-monotonic manipulation P ′i , i.e. a
P ′i such that there exists some s ∈ S such that sP ′i w̄, but w̄Pis. Intuitively,
this will not be an obvious manipulation because it is now possible for i to be
assigned to s, whereas under her true preferences, she is always assigned to a
school she strictly prefers to s. We show this formally. In particular, fix s as
i’s favorite such school, i.e.:

s := max
Pi

{s′|s′ Pi′ w̄ and w̄ Pi s
′} .

Each school s′ such that s′ Pi w̄ satisfies Hall’s matching condition, which
is to say it is possible to fill all of their seats with students ranked higher
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than i according to �s′ . By the nature of Hall’s condition, this is also true
for any subset of these schools. In particular, {s′|s′ Pi′ s} ⊆ {s′|s′ Pi w̄} and
consequently, each of the schools in {s′|s′ Pi′ s} is an aspirational school under
P ′i .

Therefore, for i’s worst possible assignment under P ′i , which we label w̄′,
it must be true that s R′i w̄

′. Therefore, by Corollary 1, there exists a profile
P ′−i such that φi(P

′) = s. Since w̄Pis and i is never assigned to a school worse
than w̄ under Pi, P

′
i is not an obvious manipulation.

We are now ready to complete our proof of Theorem 2. Let φ be a stable-
dominating mechanism, and consider a student i of type Pi. Let w̄ be as defined
in Lemma 1. We classify manipulations into two possible types: “monotonic”
or “non-monotonic” (where monotonicity is relative to w̄).

1. Monotonic manipulation: For all a ∈ S such that aP ′i w̄, we have
aPiw̄.

2. Non-monotonic manipulation: There exists some a ∈ S such that
aP ′i w̄, but w̄P ′ia.

We have already proven in Lemma 4 that no non-monotonic manipulation
is an obvious manipulation. Thus, consider a monotonic manipulation P ′i .
Condition (ii) can be dispensed with immediately for any manipulation P ′i ,
as it is easy to see that the best case from truth-telling is that agent i gets
her (true) top choice. Next, consider condition (i). If w̄ is ranked first under
P ′i , then if all students rank all schools as unacceptable, i is assigned to w̄.
Therefore, the worst possible case under P ′i cannot be strictly better than
under Pi. Now suppose w̄ is not ranked first under P ′i . For Hall’s condition
in Lemma 2 to be satisfied, every possible subset of schools preferred to w̄
must have sufficient total capacity. Under a monotonic transformation, there
are fewer possible subsets of schools preferred to w̄; therefore, Hall’s condition
continues to hold. In particular, if s P ′i w̄, then s is an aspirational school.
Therefore, if w̄ is a safety school, it is the most preferred safety school, and
by the argument in Lemma 2, i’s worst possible assignment. Alternatively,
w̄ could be an aspirational school, but in either case, from Corollary 1, there
exists a P ′−i such that φi(P

′) = w̄. From this, we can conclude that the worst
case for i (under true preferences) from submitting P ′i is weakly worse than
submitting her true preferences.

�
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4.2 Two-sided matching

Two-sided matching is closely related to school choice, and the results in this
section will be immediate corollaries from the results above. The first model of
two-sided matching appeared in the seminal paper of Gale and Shapley (1962),
where the two sides consist of men and women. For convenience, we follow
this classic literature and partition the set of agents as I = M ∪W , where
M is a set of “men” and W is a set of “women”. Such models are also often
used in other contexts, such as college admissions (also discussed in Gale and
Shapley (1962)), where the two sides are relabeled students and colleges, or
labor markets, where the two sides are relabeled as workers and firms.

Each man m ∈M has a strict preference relation Pm over W ∪ {∅}, where
∅ is interpreted as remaining unmatched. Similarly, each woman w ∈ W
has a preference relation Pw over M ∪ {∅}. A matching is a function µ :
M ∪W →M ∪W ∪ {∅} where µm = w denotes that man m is matched with
woman w (and thus µw = m); for any i ∈ I, µi = ∅ means that agent i is
unmatched. Stability is also defined equivalently as above. We additionally
say that matching µ is individually rational if µiRi∅. A mechanism φ is
individually rational if φi(P ) Ri ∅ for all P , i.e., if it always produces an
individually rational matching.

The key difference between two-sided matching and school choice is that
both sides are strategic agents and are included in welfare considerations.
Thus, while there is a strategy-proof and stable mechanism in the school
choice model (student-proposing DA), this no longer holds when both sides
are strategic, a result first shown by Roth (1982).

Theorem (Roth 1982). There exists no mechanism that is both stable and
strategy-proof.

Sönmez (1999) considers a far more general environment than just two-
sided matching. His main result is much stronger than what we present, but
in the context of two-sided matching with strict preferences, it can be stated
succinctly.

Theorem (Sönmez 1999). Given a matching problem (M,W,PM , PW ), a mech-
anism φ is individually rational, Pareto efficient, and strategy-proof if and only
if there is a unique stable assignment and φ chooses the stable assignment.

Neither of these results continue to hold when we replace strategy-proofness
with NOM. In particular, our next result shows that any stable mechanism
is individually rational, Pareto efficient, and NOM. This has implications for
markets such as the NRMP, which matches residents to hospitals using the
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doctor-proposing DA mechanism. While this mechanism (as well as any other
stable mechanism) is technically manipulable by the hospitals, it is not obvi-
ously manipulable, and thus hospitals may find it difficult to execute profitable
manipulations in practice.

Theorem 3. Any stable mechanism is individually rational, Pareto efficient,
and not obviously manipulable.

Proof. It is clear that any stable mechanism is individually rational and Pareto
efficient. That a stable mechanism is NOM follows from Theorem 2. In partic-
ular, if a woman (man) had an obvious deviation, then she would also have an
obvious deviation when the men (women) are treated as objects, which would
contradict Theorem 2.

4.3 Auctions

Our remaining applications depart from what we have considered so far in
that we allow for transfers. We also return to the notation of Section 2, where
types are denoted by θi, outcomes by x, and utility functions ui(x; θi).

26 We
begin by considering a simple first-price auction for a single good, and show
that it is obviously manipulable.

An outcome is now denoted x = (y, t), where y ∈ {0, 1}|I| is an allocation
vector such that

∑
i yi ≤ 1 and t ∈ R|I| is a vector of transfers. Agent i’s

type space is Θi ⊂ R+, and i’s utility function when his type is θi ∈ Θi is
ui((y, t); θi) = 1{yi=1}θi − ti. In a first-price auction, each agent submits a
bid (which we take as equivalent to reporting his type), the highest bid wins
and pays his bid, and all other bidders pay 0. Let φFP (θ) = (yFP (θ), tFP (θ))
denote the first-price auction mechanism, where yFPi (θ) = 1 and tFPi (θ) = θi
if and only if θi > θj for all j 6= i, and yFPi (θ) = tFPi (θ) = 0 otherwise.27

Proposition 2. The first-price auction is obviously manipulable.

This proposition follows straightforwardly from the definition. To see this,
consider an agent of type θi, and an alternative report 0 < θ′i < θi. Un-
der θi, both the worst and best cases are 0: minθ−i

ui(φ
FP (θi, θ−i); θi) =

26Note that these utility functions need not be given cardinal interpretations, i.e., we
only assume that agents have ordinal preferences over allocations that are increasing in
money. Also, in this subsection and the next, to be consistent with much of the auctions
literature, we allow for continuum outcome/type spaces. The fundamental analysis would
be unchanged if we assumed only a finite space of possible transfers.

27In the event of a tie, the winner is chosen randomly among those who submitted the
highest bid.
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maxθ−i
ui(φ

FP (θi, θ−i); θi) = 0. Under θ′i, the worst-case is still 0 (when i loses),
but the best case is strictly better: maxθ−i

ui(φ
FP (θ′i, θ−i); θi) = θi − θ′i > 0 =

maxθ−i
ui(φ

FP (θ′i, θ−i); θi), and thus, according to Definition 2, reporting θ′i is
an obvious manipulation.

In single-unit auctions, the first-price auction is (obviously) manipulable,
while the second-price auction is famously strategy-proof (Vickrey, 1961). For
our purposes, multi-unit auctions are actually more interesting, because while
the analogue of the first-price auction, the pay-as-bid auction, is still (ob-
viously) manipulable, the analogue of the second-price auction is no longer
formally strategy-proof. In this section, we show that while this auction is
manipulable, it is not obviously so.

The auctioneer now hasK identical objects to be sold. Let yi ∈ {0, 1, . . . , K}
denote the number of units assigned to agent i, and ti ∈ R be the payment
of agent i. Defining y = (y1, . . . , yN) and t = (t1, . . . , tN), an outcome is a
vector x = (y, t) such that

∑
i yi ≤ K. Bidder i’s type is a K-dimensional

vector θi = (θ1i , . . . , θ
K
i ). Because the objects are identical, it is without loss

of generality to assume that θ1i ≥ θ2i ≥ · · · ≥ θKi for all θi ∈ Θi. The utility of
a bidder of type θi is ui((y, t); θi) =

∑yi
`=1 θ

`
i − ti.

The natural counterpart of the first-price auction is the pay-as-bid auc-
tion (sometimes also called the discriminatory price auction): each bidder
submits a vector of bids for each of the K units (which we take as reporting
her type, and which may be 0 for some units), and pays the sum of her win-
ning bids. Indeed, the first-price auction introduced above is a special case
of a pay-as-bid auction, and the same arguments can be used to prove the
following.

Corollary 2. The pay-as-bid auction is obviously manipulable.

In a (K + 1)−price auction, each agent again submits a bid for each of the
K units (some of which may be 0). All of the bids are ordered from highest to
lowest. The K units are awarded to the K highest submitted bids, with the
price of each unit equal to the (K + 1)th highest bid. Note that when K = 1,
we recover the second-price auction, which is strategy-proof. While for any
K > 1 the (K + 1)−price auction is not strategy-proof, it is intuitively much
less susceptible to manipulation than the pay-as-bid auction. Our next result
formalizes this intuition.28

28In the specific context of Treasury auctions, Friedman (1960) proposed a switch from
a pay-as-bid auction format to (K + 1)-price auction format (sometimes called a uniform-
price auction), precisely as a way to reduce strategizing and bid shading. His proposal
was eventually adopted, and is still used today. Our results provide a formal theoretical
justification for this intuition (see also Pathak and Sönmez (2013) and Azevedo and Budish
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Theorem 4. The (K + 1)−price auction is not obviously manipulable.

Proof. Let φK+1 denote the (K + 1)-price auction mechanism. Consider an
agent of type θi, and first consider reporting truthfully. It is simple to cal-
culate that minθ−i

ui(φ
K+1(θi, θ−i); θi) = 0 and maxθ−i

ui(φ
K+1(θi, θ−i); θi) =∑K

k=1 θ
k
i . We must show that for any manipulation θ̃i 6= θi, parts (i)-(ii) of

Definition 2 all hold. First, it should be clear again that for any θ̃i, we have
minθ−i

ui(φ
K+1(θ̃i, θ−i); θi) = 0 and maxθ−i

ui(φ
K+1(θ̃i, θ−i); θi) =

∑K
k=1 θ

k
i .

Therefore, we have minθ−i
ui(φ

K+1(θ̃i, θ−i); θi) = minθ−i
ui(φ

K+1(θi, θ−i); θi)

and maxθ−i
ui(φ

K+1(θ̃i, θ−i), θ−i) = maxθ−i
ui(φ

K+1(θi, θ−i), θ−i), and so parts
(i) and (ii) of Definition 2 are satisfied.

4.4 Bilateral Trade

As a final application, we consider the classic bilateral trade setting. The set
of agents is I = {B, S}, where B is a potential buyer and S a seller of a single
object. We normalize the type spaces for both the buyer and the seller to
ΘS = ΘB = [0, 1], where θS ∈ ΘS is the seller’s cost to produce the object,
and θB ∈ ΘB is the buyer’s value for the object. Each agent knows their own
type, but not the type of the other agent.

A mechanism here is written φ(θ) = (y(θ), tB(θ), tS(θ)), where for any
θ = (θB, θS), y(θ) ∈ {0, 1} denotes whether or not trade occurs, tB(θ) is
the transfer from the buyer, and tS(θ) is the transfer to the seller. Given a
mechanism φ and reported types (θ̂B, θ̂S), utilities are thus written

UB(φ(θ̂B, θ̂S); θB) = θBy(θ̂B, θ̂S)− tB(θ̂B, θ̂S)

US(φ(θ̂B, θ̂S); θS) = −θSy(θ̂B, θ̂S) + tS(θ̂B, θ̂S)

We first consider one of the simplest and most well-known mechanisms
for this setting, the double auction mechanism analyzed by Chatterjee and
Samuelson (1983). In this mechanism, each agent reports her type. If θB ≥ θS,
then trade occurs at a price p = θB+θS

2
; otherwise, no trade occurs, and no

transfers are made. Formally:

y(θ) =

{
1, θB ≥ θS

0, θB < θS
tS(θ) = tB(θ) =

{
θB+θS

2
, θB ≥ θS

0, θB < θS

(2018) for complementary analyses). Ausubel et al. (2014) compares the efficiency and
revenue properties of pay-as-bid and uniform price auctions in Bayes-Nash equilibrium.
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Proposition 3. The double auction mechanism is obviously manipulable.

To see this, consider a buyer of type θB, and let θ′B = θB − ε (a completely
analogous argument can be made for the seller). Then, it is simple to calculate
that maxθS UB(φ(θ′B, θS); θB) = θB/2 + ε/2, while maxθS UB(φ(θB, θS); θB) =
θB/2. Therefore, θ′B is an obvious manipulation.

Myerson and Satterthwaite (1983) prove a general theorem that in this
setting, there is no efficient, individually rational, and Bayesian incentive com-
patible mechanism (without the infusion of an outside subsidy). One common
interpretation of this negative result is that two-sided private information in-
troduces “transaction costs” that preclude efficient bargaining (a la Coase,
1960); in other words, in the presence of asymmetric information, there is a
fundamental conflict between incentives and efficiency.

More recent work on mechanism design under ambiguity has re-evaluated
these claims by considering agents who may not be classical expected util-
ity maximizers, but instead are ambiguity averse. For instance, De Castro
and Yannelis (2018) argue that ambiguity “solves” the conflict between in-
centives and efficiency. In particular, they show that if agents have maximin
preferences, then an efficient, incentive compatible, individually rational, and
budget-balanced mechanism exists, and further, one such mechanism is the
double auction mechanism described above. The intuition is that the worst
case from any report is that trade does not occur, and so when agents evaluate
outcomes using maximin preferences, all reports are equivalent, and everyone
is willing to report truthfully. While this requires an arguably quite strong
assumption that agents are completely pessimistic and certain trade will not
occur, Wolitzky (2016) considers a more general model of ambiguity averse
agents and shows that there are still conditions under which the conclusion of
the Myerson-Satterthwaite theorem is “reversed”.

The agents in our model also compare worst (and best) case outcomes, but
in a different way, and in particular one that reinforces Myerson and Satterth-
waite’s original insight. To see what we mean, first, note that Proposition
3 shows that double auctions are obviously manipulable (an extreme form of
non-incentive compatibility), which is in contrast to results that show such a
mechanism is incentive compatible when agents are ambiguity averse. Second,
we can extend this beyond double auctions and further prove an analogue to
Myerson and Satterthwaite’s impossibility theorem for general mechanisms.
Following this literature, we consider mechanisms φ(θ) = (y(θ), tB(θ), tS(θ))
that satisfy the following properties:29

29Myerson and Satterthwaite (1983) assume an interim version of individual rationality;
however, one of the goals of our project is to move away from a reliance on prior distributions,
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1. Efficiency: y(θB, θS) = 1 if and only if θB ≥ θS.

2. Individual rationality: UB(φ(θB, θS); θB) ≥ 0 and US(φ(θB, θS); θS) ≥ 0
for all (θB, θS).

3. (Weak) budget balance: tS(θ) ≤ tB(θ) for all θ.

We then have the following result.

Theorem 5. Every efficient, individually rational, and weakly budget balanced
mechanism is obviously manipulable.

Proof. Assume that φ(θ) = (y(θ), tB(θ), tS(θ)) is an efficient, individually ra-
tional, weakly budget-balanced mechanism that is not obviously manipulable.
Define

p̄S = max
θ s.t. y(θ)=1

tS(θ)

p
B

= min
θ s.t. y(θ)=1

tB(θ).

In words, p̄S is the highest possible price the seller may receive, conditional
on selling the object and p

B
is the lowest possible price the buyer may pay,

conditional on buying the object.
Now, note that efficiency combined with individual rationality imply the

following about tS and tB:

tS(θB, θS) ≥ θS for all θB ≥ θS (6)

tB(θB, θS) ≤ θB for all (θB, θS). (7)

(for the first line, we must have y(θB, θS) = 1 for all θB ≥ θS, by efficiency;
IR then says tS(θB, θS) ≥ θS. The second line is immediate from the buyer’s
IR constraint.) Now, equations (6) and (7) imply p̄S ≥ 1 and p

B
= 0 (for the

former, substitute (θB, θS) = (1, 1), and for the latter, substitute (θB, θS) =
(0, 0)). By weak budget-balance, tS(θB, θS) ≤ tB(θB, θS) ≤ θB ≤ 1 for all
(θB, θS), and so the former inequality is actually an equality: p̄S = 1.

Consider some type of the seller θS < 1. Note that p̄S = 1 implies that
maxθ′B US(φ(θ′B, 1); θS) = 1− θS. For φ to be not obviously manipulable then
requires that maxθ′B US(φ(θ′B, θS); θS) ≥ 1 − θS for all θS; in other words, we
must have maxθ′B tS(θ′B, θS) = 1 for all θS. Since tS(θ′B, θS) ≤ θ′B, the only
possibility is that tS(1, θS) = 1 for all θS. On the other hand, consider a buyer
of type θB > 0, and note that maxθ′S US(φ(0, θ′S); θB) = θB. Again, NOM
implies that maxθ′S UB(φ(θB, θ

′
S); θB) ≥ θB for all θB; in other words, for all

and so an ex-post formulation of individual rationality is more appropriate for our setting.
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θB, there must exist some θ′S such that y(θB, θ
′
S) = 1 and tB(θB, θ

′
S) = 0.

Budget balance and the seller’s IR constraint imply that the only possibility
is θ′S = 0, i.e., for all θB, we must have y(θB, 0) = 1 and tB(θB, 0) = 0.

To summarize, we have shown that if φ is an efficient, individually rational,
weakly budget balanced, and NOM mechanism, then the following must be
true: (i) y(1, θS) = 1 and tS(1, θS) = 1 for all θS, and (ii) y(θB, 0) = 1 and
tB(θB, 0) = 0 for all θB. In particular, setting θS = 0 in (i) and θB = 1 in (ii)
gives tS(1, 0) = 1 and tB(1, 0) = 0, which contradicts weak budget balance.

5 Conclusion

Market design is fortunate in that there are known, strategy-proof mechanisms
that achieve attractive market outcomes. At the same time, strategy-proofness
is a constraint that limits the choice of mechanisms, and so may hinder per-
formance in some dimensions, such as efficiency or revenue.

In markets where a planner attempts to achieve a more desirable outcome
by using a non-strategy-proof mechanism, they must ask: to what extent are
the gains undone by strategic behavior of the agents? This paper provides
an intuitive and tractable taxonomy for determining when it will be obvi-
ous to participants that a mechanism can be manipulated. If it is obvious
to participants that a mechanism can be manipulated, then a policy maker
should be skeptical that any properties relative to the agents’ true preferences
will be retained in practice; the Boston mechanism and pay-as-bid multi-unit
auctions are examples of obviously manipulable mechanisms, and indeed have
reputations of being easily manipulated in practice. Alternatively, if it is
not obvious that a mechanism can be manipulated, then there is reason to
be optimistic that improvements will be realized; the (K + 1)−price auction
and doctor-proposing DA mechanism (for two-sided matching markets) are
examples of mechanisms that are manipulable, but are not obviously manip-
ulable, and indeed seem to perform well in practice. The EADA mechanism
is also manipulable, but not obviously so. While it has not yet been used
(to our knowledge) in practice, the many desirable features of this mechanism
outlined in other work, combined with the fact that EADA is not obviously
manipulable, suggests that it may be worthy of further investigation.

Our paper opens up several avenues for further investigation. For instance,
we defined an obvious manipulation with respect to truthful reporting as the
default focal strategy. However, it is possible to generalize the idea to com-
pare any two strategies, and look for an equilibrium in ‘no obvious deviations’.
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Additionally, we restricted attention in this paper to direct revelation mecha-
nisms. While this this an important class in its own right, with many market
design applications, it would nevertheless be interesting to explore indirect
mechanisms as well. For instance, which mechanisms in this broader class
can be identified as manipulable by cognitively limited agents? If such a
mechanism has no obvious deviations, is there a corresponding NOM direct
mechanism? These are interesting questions for future work.
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A Definition of the Mechanisms

In this appendix, we give formal definitions of the matching mechanisms ana-
lyzed in Section 3.
Boston Mechanism:

For a given problem P , BM mechanism selects its outcome through the
following mechanism:
Step 1: Each student applies to her most preferred school. Each school s
accepts the best students according to its priority list, up to qs, and rejects
the rest.
Step k > 1: Each student rejected in Step k − 1 applies to her kth choice.
Each school s accepts the best students among the new applicants, up to the
number of remaining seats, and rejects the rest.

School-Proposing DA Mechanism:
For a given problem P , school-proposing DA mechanism selects its outcome

through the following mechanism:
Step 1: Each school s proposes to top qs students under �s. Each student i
accepts the best proposal it gets according to Pi, and rejects the rest.
Step k > 1: Each school s proposes to top qs students under �s who have
not rejected it yet. Each student i accepts the best proposal it gets according
to Pi, and rejects the rest.

Top Trading Cycles Mechanism:
For a given problem P , TTC mechanism selects its outcome through the

following mechanism:
Step 0: Assign a counter to each school and set it equal to the quota of

each school.
Step 1: Each student points to her most preferred school among those

remaining. Each remaining school points to the top-ranked student in its
priority order. Due to the finiteness there is at least one cycle.30 Assign each
student in a cycle to the school she points to and remove her. The counter of
each school in a cycle is reduced by one and if it reduces to zero, the school is
removed.

Step k > 1: Each student points to her most preferred school among the
remaining ones. Each remaining school points to the student with the highest
priority among the remaining ones. There is at least one cycle. Assign each
student in a cycle to the school she points to and remove her. The counter of
each school in a cycle is reduced by one and if it reduces to zero, the school is

30A cycle is an ordered list of distinct schools and distinct students (s1, i1, s2, ..., sk, ik)
where s1 points to i1 , i1 points to s2 , ... , sk points to ik , ik points to s1 .
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also removed.
Deferred Acceptance-Top Trading Cycles Mechanism
For a given problem P , DA-TTC mechanism selects its outcome through

the following mechanism:
Round DA: Run the DA mechanism. Update the priorities by giving the
highest priorities for each school to the students assigned to it.
Round TTC: Run the TTC mechanism by using the preference profile and
updated priorities.
Efficiency-Adjusted Deferred Acceptance Mechanism:

In order to define the mechanism selecting the outcome of EADAM, we
first present a notion that we use in the definition. If student i is tentatively
accepted by school s at some step t and is rejected by s in a later step t′ of
DA and if there exists another student j who is rejected by s in step t′′ ∈
{t, t + 1, ..., t′ − 1}, then i is called an interrupter for s and (i, s) is called
an interrupting pair of step t′. Under EADAM, each student decides to
consent or not. For a given problem P and consent decisions, EADAM selects
its outcome through the following algorithm:
Round 0: Run the DA mechanism.
Round k > 0: Find the last step of the DA run in Round k−1 in which a con-
senting interrupter is rejected from the school for which she is an interrupter.
Identify all the interrupting pairs of that step with consenting interrupters.
For each identified interrupting pair (i, s), remove s from the preferences of i
without changing the relative order of the other schools. Rerun the DA al-
gorithm with the updated preference profile. If there are no more consenting
interrupters, stop.
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