Problem 1

Elizabeth

There are two pure-strategy Nash equilibria (Stag, Stag) and (Hare, Hare).

Problem 2

Players $i=B o b, U m u t$, Thayer choose $a_{i} \in\{$ Attend (A), Not to attend (N) $\}$.

There are two pure-strategy Nash equilibria (A, A, A) and (N, N, N).

Problem 3

Players $i=$ Jerry, Duece choose $a_{i} \in[0, \infty)$. Note that a_{i} is an integer.
(i) Scenario 1: Suppose both Jerry and Duece gets the prize when $a_{\text {Jerry }}=a_{\text {Duece }}$.

- Player i's best response to Player j's actions:

$$
B R_{i}\left(a_{j}\right)= \begin{cases}\left\{a_{j}, a_{j}+1, a_{j}+2, \ldots\right\} & , \text { if } \quad 0 \leq a_{j}<20 \\ \{0,20,21, \ldots\} & , \text { if } a_{j}=20 \\ \{0\} & , \text { if } a_{j}>20\end{cases}
$$

The set of Nash equilibria is the intersection of the best response functions, which are

- $(0,0),(1,1) \ldots(20,20)$, where $a_{\text {Jerry }}=a_{\text {Duece }}$ and $a_{i} \in[0,20]$
- $(20,0),(0,20),(0,21),(21,0),(0,22),(22,0) \ldots$, where $a_{i} \in[20, \infty)$ and $a_{j}=0$
(ii) Scenario 2: Suppose neither of Jerry and Duece gets the prize when $a_{\text {Jerry }}=$ $a_{\text {Duece }}$.
- Player i's best response to Player j's actions:

$$
B R_{i}\left(a_{j}\right)=\left\{\begin{array}{lll}
\left\{a_{j}+1, a_{j}+2, a_{j}+3 \ldots\right\} & , \text { if } & 0 \leq a_{j}<20 \\
\{0,21,22 \ldots\} & , \text { if } & a_{j}=20 \\
\{0\} & , \text { if } & a_{j}>20
\end{array}\right.
$$

Nash equilibria are $(20,0),(0,20),(0,21),(21,0), \ldots$, where $a_{i} \in[20, \infty)$ and $a_{j}=0$

Problem 4

Players $i=1,2$ choose $x_{i} \in[0,10]$. Note that x_{i} is an integer.

- Player i's best response to the other Player j's actions:

$$
B R_{i}\left(x_{j}\right)=\left\{\begin{array}{lll}
\left\{10-x_{j}, \ldots, 10\right\} & , \text { if } & 0 \leq x_{j}<6 \\
\{5,6\} & , \text { if } & x_{j}=6 \\
x_{j}-1 & , \text { if } & 6<x_{j} \leq 10
\end{array}\right.
$$

Nash equilibria are $(5,6),(6,5),(5,5)$ and $(6,6)$.

Problem 5

(i) Suppose the person only cares about her own comfort.

	Player 2	
	Sit	Stand
$\stackrel{\square}{4}$ Sit	1,1	2, 0
\cdots Stand	0,2	0, 0

There is only one pure-strategy Nash equilibria (Sit, Sit).
(ii) Suppose the person is altruistic.

	Player 2	
	Sit	Stand
$\stackrel{H}{4}$ Sit	2, 2	0, $\underline{3}$
\cdots Stand	3, 0	1, 1

There is only one pure-strategy Nash equilibria (Stand, Stand).

Problem 6

Both players would try to maximize their payoff.

- Player 1's best response:
$x^{*}(y)=\underset{x}{\operatorname{argmax}}\left(3+6 y-\frac{3 x}{2}\right) x$
F.O.C: $3+6 y-3 x=0 \Longrightarrow x^{*}(y)=1+2 y$
- Player 2's best response:
$y^{*}(x)=\underset{y}{\operatorname{argmax}}\left(6-x-\frac{y}{2}\right) y$
F.O.C: $6-x-y=0 \Longrightarrow y^{*}(x)=6-x$

Combine $x^{*}(y)$ and $y^{*}(x)$, we get $x^{*}=\frac{13}{3}$ and $y^{*}=\frac{5}{3}$.
The Nash equilibria is $\left(\frac{13}{3}, \frac{5}{3}\right)$

