Problem 9:

Suppose 1 plays H with probability p.

$$
\begin{aligned}
\pi_{2}(H) & =(1)(p)+(4)(1-p) \\
& =4-3 p \\
\pi_{2}(T) & =(2)(p)+(5)(1-p) \\
& =5+p
\end{aligned}
$$

Indifferent when

$$
\begin{aligned}
4-3 p & =5+p \\
-2 p & =1 \\
p & =-\frac{1}{2}
\end{aligned}
$$

A probability cannot be negative of course, so at this point I hope you pause and recognize that something unusual is going on. In this case, for player $2, T$ strictly dominates H. It can never be an equilibrium for her to play H with any probability, so there is no mixed strategy equilibrium. The only Nash equilibrium is (T, T).

Problem 10:

We do not typically do mixed strategies with more than two strategies. When you see a game like this

you should look for a strategy you can eliminate. In this case M strictly dominates T , so we can eliminate T (Player 1 never plays T in any equilibrium). Now the game looks like:

Now this is a standard game. If 2 plays L with prob p, then 1's payoffs are:

$$
\begin{aligned}
\pi_{1}(M) & =2 p+5(1-p) \\
\pi_{1}(B) & =3 p+1(1-p)
\end{aligned}
$$

1 is indifferent when $p=\frac{1}{5}$. If 1 plays M with prob p , then 2 's payoffs are:

$$
\begin{aligned}
& \pi_{2}(L)=4 q+2(1-q) \\
& \pi_{2}(R)=5 q+1(1-q)
\end{aligned}
$$

2 is indifferent when $q=\frac{1}{2}$. Therefore, the mixed strategy NE is 1 plays M with prob $\frac{1}{2}$ and 2 plays L with probability $\frac{1}{5}$.

Problem 11

Suppose two of the players play the following mixed strategy: I will attend with probability p. We find when the third player is indifferent between attending and not.

$$
\begin{aligned}
\pi(\text { Attend }) & =5 \\
\pi_{2}(\text { Not }) & =10 *(\text { the probability someone else attends })+ \\
& =0 *(\text { the probability no one else attends })
\end{aligned}
$$

There are several ways someone else can attend but only one way no one else attends, so we calculate the latter. The probability no one else attends is $(1-p)^{2}$. Therefore, the probability someone else attends is $1-(1-p)^{2}$. The player is indifferent where

$$
\begin{aligned}
5 & =10 *\left(1-(1-p)^{2}\right) \\
(1-p)^{2} & =\frac{1}{2} \\
p & =1-\sqrt{\frac{1}{2}}
\end{aligned}
$$

So the mixed strategy is each person attends the meeting with the probability found above.

