Problem 18

Player 2

	A	B
$\because \mathrm{A}$	6,6	0,12
$\stackrel{\sim}{\sim}{ }_{\sim}^{*}$	12, 0	1,1

Trigger Strategy for this game is:
Period 1: Play A
Period t : If in every earlier period we have each played A, then play A. If in any previous period either of us have ever played B, then B.

- $\pi_{\text {cooperating }}^{1} \geq \pi_{\text {cheating }}^{1} \Longrightarrow \frac{6}{1-\delta} \geq 12+\frac{\delta}{1-\delta}$

Player 1 will cooperate so long as $\delta \geq \frac{6}{11}$

- $\pi_{\text {cooperating }}^{2} \geq \pi_{\text {cheating }}^{2} \Longrightarrow \frac{6}{1-\delta} \geq 12+\frac{\delta}{1-\delta}$

Player 2 will cooperate so long as $\delta \geq \frac{6}{11}$
The trigger strategy will be a Nash equilibrium if $\delta \geq \frac{6}{11}$.

Problem 19

Player 2

Cooperation is advantageous when a NE is Pareto-inefficient. However, in the above game, there's no outcome better for both of the players than if each follow their own self-interests. They are not cooperating.

Problem 20

Player 2

Trigger Strategy for this game is:
Period 1: Play A
Period t : If in every earlier period we have each played A, then play A. If in any previous period either of us have ever played B, then B.

- $\pi_{\text {cooperating }}^{1} \geq \pi_{\text {cheating }}^{1} \Longrightarrow \frac{6}{1-\delta} \geq 12+\frac{\delta}{1-\delta}$

Player 1 will cooperate so long as $\delta \geq \frac{6}{11}$

- $\pi_{\text {cooperating }}^{2} \geq \pi_{\text {cheating }}^{2} \Longrightarrow \frac{6}{1-\delta} \geq 12+\frac{4 \delta}{1-\delta}$

Player 2 will cooperate so long as $\delta \geq \frac{3}{4}$
The trigger strategy will be a Nash equilibrium if $\delta \geq \frac{3}{4}$.

Problem 21

Player 2

	A	B
	6, 6	0, $\underline{9}$
	12, 0	$\underline{1}, 1$

Trigger Strategy for this game is:
Period 1: Play A
Period t: If in every earlier period we have each played A, then play A. If in any previous
period either of us have ever played B, then B.

- $\pi_{\text {cooperating }}^{1} \geq \pi_{\text {cheating }}^{1} \Longrightarrow \frac{6}{1-\delta} \geq 12+\frac{\delta}{1-\delta}$

Player 1 will cooperate so long as $\delta \geq \frac{6}{11}$

- $\pi_{\text {cooperating }}^{2} \geq \pi_{\text {cheating }}^{2} \Longrightarrow \frac{6}{1-\delta} \geq 9+\frac{\delta}{1-\delta}$

Player 2 will cooperate so long as $\delta \geq \frac{3}{8}$

The trigger strategy will be a Nash equilibrium if $\delta \geq \frac{6}{11}$.

Problem 22

Firm $i=1,2$
In equilibrium, both firms would try to maximize their payoff.
Firm i's best response:
$q_{i}^{*}\left(q_{j}\right)=\underset{q_{i}}{\operatorname{argmax}}\left(100-q_{i}-q_{j}\right) q_{i}$
F.O.C: $100-2 q_{i}-q_{j}=0 \Longrightarrow q_{i}^{*}\left(q_{j}\right)=\frac{100-q_{j}}{2}$

Combine $q_{1}^{*}\left(q_{2}\right)$ and $q_{2}^{*}\left(q_{1}\right)$, we get $q_{1}^{*}=q_{2}^{*}=\frac{100}{3}$ and $\pi_{1}^{*}=\pi_{2}^{*}=\frac{10000}{9}$.
The Nash equilibria is $\left(\frac{100}{3}, \frac{100}{3}\right)$

Suppose the firms play this game an infinite number of times.
Firm $i=1,2$ choose to $\{(C)$ ooperate, (D)eviate $\}$

If cooperate, they maximize their payoff by:
$Q^{*}=\underset{Q}{\operatorname{argmax}}(100-Q) Q$
F.O.C: $100-2 Q=0 \Longrightarrow Q^{*}=50$
$q_{1}^{*}=q_{2}^{*}=\frac{Q^{*}}{2}=\frac{50}{2}=25$ and $\pi_{1}=\pi_{2}=1,250$
Period 1: Firm 1 and Firm 2 play C and choose quantity 25
Period t: If in every earlier period both firm play C, then play C. If in any previous period either of the firms have ever play D, then play D.

If firm i choose to deviate, then firm i's and firm j's payoff would be:
$q_{i}^{*}=\underset{q_{i}}{\operatorname{argmax}}\left(100-25-q_{i}\right) q_{i}$
F.O.C: $75-2 q_{i}=0 \Longrightarrow q_{i}^{*}=37.5$
$\pi_{1}=1406.25$ and $\pi_{2}=937.5$

Firm 2

	C	D
$\cdots C$	1250, 1250	937.5, 1406.25
咸 D	1406.25, 937.5	1111.11,1111.11

- $\pi_{\text {cooperating }}^{1} \geq \pi_{\text {cheating }}^{1} \Longrightarrow \frac{1250}{1-\delta} \geq 1406.25+\frac{10000 \delta}{9(1-\delta)}$

Player 1 will cooperate so long as $\delta \geq 0.5294$

- $\pi_{\text {cooperating }}^{2} \geq \pi_{\text {cheating }}^{2} \Longrightarrow \frac{1250}{1-\delta} \geq 1406.25+\frac{10000 \delta}{9(1-\delta)}$

Player 2 will cooperate so long as $\delta \geq 0.5294$

The trigger strategy will be a Nash equilibrium if $\delta \geq 0.5294$.

