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Abstract

No strategy-proof mechanism Pareto dominates the student-proposing Deferred Ac-

ceptance mechanism (hereafter DA). However, it is unknown if a mechanism can Pareto

dominate DA in equilibrium. We demonstrate a surprising result: a market designer

can do better by learning less about students’ preferences when making a school as-

signment. Specifically, we demonstrate that running DA but limiting students to only

two applications always has an equilibrium (in weakly undominated, pure strategies)

that Pareto dominates DA. We also show that no mechanism that Pareto improves

DA with respect to submitted preferences actually Pareto improves DA in equilibrium.

Therefore, such a mechanism may not improve DA in practice.
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1 Introduction

Due in large part to the contribution of economists, many U.S. school districts now allow

students to choose which school they wish to attend. However, there is no perfect mecha-

nism for making the student assignment since an assignment must balance numerous and

sometimes conflicting objectives.

As described in Abdulkadiroğlu et al. (2009), the typical objective of a school choice system

is efficiency, and the market designer is constrained by strategic incentives and the need to

respect priorities. Unfortunately, efficiency as an objective is fundamentally incongruent

with these constraints. It is well known that the student-proposing Deferred Acceptance

mechanism (hereafter DA) makes a fair assignment1 and that Pareto dominates any other

fair assignment (Abdulkadiroğlu and Sönmez, 2003).2 However, there does not exist a fair

and Pareto efficient assignment mechanism (Balinski and Sönmez, 1999; Abdulkadiroğlu

and Sönmez, 2003). Moreover, it is impossible for a strategy-proof mechanism to Pareto

improve the student-optimal fair assignment.3

There is no strategy-proof mechanism that Pareto dominates DA, but is there a manipu-

lable mechanism which improves DA in equilibrium? Following Ergin and Sönmez (2006),

we model a mechanism as a simultaneous-move game. We seek a mechanism that always

has a pure-strategy Nash equilibrium such that the associated assignment weakly Pareto

dominates the DA assignment. We only consider equilibria in which no student plays a

weakly dominated strategy.

At first glance, one might think the correct approach is to ask the students for their

1Following the convention in the literature, we define an assignment as fair if there is no student i and

school a such that i prefers a to her assignment and such that i has higher priority at a than one of the

students assigned to a. This is also called eliminating justified envy.
2We will refer to this interchangeably as the DA assignment and the student-optimal fair assignment.
3Under a strategy-proof mechanism, reporting true preference over schools weakly Pareto dominates

any other strategies. When students act truthfully, Kesten (2010) demonstrates that no strategy-proof and

efficient mechanism Pareto dominates DA.
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preferences, calculate the DA assignment, and then Pareto improve this assignment.4 It

is well known that such a mechanism cannot be strategy-proof;5 however, the equilibrium

properties of any such mechanism are unknown. Our Theorem 1 demonstrates that no

such mechanism Pareto dominates DA once we solve for the equilibria. These mechanisms

only dominate DA in a simplistic way. Once students play a best response, they no longer

improve upon DA and in fact some students can be made worse off.

Next, we find a positive and surprising result. A surprising mechanism has superior equi-

librium properties to DA: running DA but limiting each student’s application to only two

schools. We call this the 2-school DA.6 The intuition is as follows. Whenever we learn

that a student i prefers school a to school b, this imposes a constraint on the designer. If

we assign i to b, then we can only assign students to a that have higher priority at a than

i. In order to improve upon the DA assignment, the designer must learn both a student’s

DA assignment and an alternative that she prefers. However, the designer does not want

to learn all of the schools a student prefers to her DA assignment. Each school she reveals

imposes a new constraint on the designer. When all schools are revealed, the only assign-

ment that can satisfy all of the constraints is the DA assignment. Therefore, the designer

does better by limiting the information a student is able to reveal. By allowing the student

to rank only two schools, in equilibrium she lists her DA assignment second and a school

she prefers first, and the outcome weakly Pareto dominates the DA assignment.7

4There are many ways of doing this. One such approach is the Efficiency Adjusted Deferred Acceptance

mechanism introduced in Kesten (2010). Dur et al. (2015) characterize the class of mechanisms Pareto

dominating DA mechanism.
5Otherwise it would be an efficient, strategy-proof mechanism that always selects the fair and efficient

assignment when it exists. This would violate the impossibility theorem in Kesten (2010).
6Note that when students submit their true preferences, 2-school DA cannot be Pareto ranked relative to

DA. It is straightforward to verify that a student can be made worse off (specifically by being unassigned),

receive the same assignment, or receive a better assignment relative to the DA assignment. Therefore, our

impossibility result does not apply.
7More precisely, in some equilibria students submit preferences in this manner. There are other equilibria

in which students list a different fair assignment second, and in these equilibria, a student may be assigned

to a worse school than her DA assignment.

3



For our equilibrium results, we have assumed complete information. This is for tractability

and is the same approach taken by several other papers in the literature (for example,

Pathak and Sönmez (2008), and Ergin and Sönmez (2006)). However, our results only

depend on a student’s DA assignment being predictable.8 The preferences of the other

students and indeed the assignments of the other students are only relevant to student i

to the extent that they impact i’s assignment. Therefore, in a sufficiently large market,

our results will continue with imperfect information to the extent that students are able to

predict what their DA assignment will be. Abdulkadiroğlu et al. (2006) provides anecdotal

evidence that parents in Boston had grown quite adept at this. Moreover, the typical

“cut-off” for a school is information that a school board could easily provide.

2 Relationship to the Literature

Haeringer and Klijn (2009) is the first paper to consider DA when students may only

submit a limited number of applications. At first glance, our paper may seem at odds

with theirs. They note that once students are limited in the number of schools they may

rank, DA is no longer strategy-proof, and they study Nash equilibria of the associated

preference revelation game. They find that any equilibrium assignment when students

are limited to ranking k schools remains an equilibrium when students may list l > k

schools. This would imply that in equilibrium 2-school DA does no better than DA. The

difference between our analysis and theirs is that they allow Nash equilibria where students

play weakly dominated strategies. Specifically, for any equilibrium in which students list

only k schools, it remains an equilibrium for every student to continue to list the same

k schools even when they are allowed to list more schools.9 This is a Nash equilibrium,

8Formally, if each student can predict her DA assignment, then she can play a strategy where she ranks

her DA school second, and a school she prefers first. If every student plays such a strategy, then the outcome

of the 2-school DA will weakly Pareto dominate the DA outcome.
9Loosely speaking, their proof proceeds as follows. Any student who can profitably deviate and receive

school s may profitably deviate by ranking s first, and therefore would have a profitable deviation whether
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but it is a weakly dominated strategy to only submit k schools when you find more than k

schools acceptable. It is not true that all of the equilibria in weakly undominated strategies

when students are constrained to list only k schools continue to be equilibria in weakly

undominated strategies when students rank l > k schools.10

Calsamiglia et al. (2010) is also closely related to the current paper. They run an exper-

iment to test the impact of limiting the number of schools a student is able to rank.11

Specifically, they find that due to miscoordination there is a decrease in efficiency and an

increase in justified envy when students are constrained to only listing three schools.

Kesten (2010) has three results which motivate the current paper. Similar to Abdulka-

diroğlu et al. (2009), he demonstrates that no strategy-proof and efficient mechanism can

Pareto dominate DA.12 Second, he identifies the precise source of DA’s inefficiencies. Fi-

nally, he introduces a mechanism, the Efficiency Adjusted Deferred Acceptance mechanism

(hereafter EADAM), that Pareto improves DA when students submit their true preferences.

To the best of our knowledge, the equilibrium properties of EADAM are unknown. How-

ever, our Theorem 1 demonstrates that EADAM does not dominate DA in equilibrium.13

they can rank one, two, or any number of schools.
10Haeringer and Klijn (2009) also provide an example that demonstrates that the equilibria assignments

cannot all be Pareto ranked relative to the DA assignment. Here again, our results do not conflict. Our

paper finds that there always exists an equilibrium that Pareto dominates the DA assignment. Their paper

notes that not all equilibria Pareto dominate DA. Note that our Theorem 3 demonstrates that all equilibria

(that survive iterated elimination of weakly dominated strategies) can be Pareto ranked relative to the

school-proposing deferred acceptance mechanism.
11Their experimental design limits students to ranking three schools, so it does not directly test our

mechanism which limits students to two schools. However, we believe their findings remain informative for

our mechanism.
12Kesten and Kurino (2013) identify maximal preference domains for which a strategy-proof mechanism

can Pareto dominate DA.
13Our paper addresses the problem of making a fair assignment more efficient. There are several papers

that have focused on making an efficient assignment fairer. Kesten (2004) introduces the Equitable Top

Trading Cycles mechanism in order to reduce the number of priority violations induced by TTC. Morrill

(2015) addresses the same problem by introducing the mechanism Clinch and Trade.
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3 Model

In a school choice problem (Abdulkadiroğlu and Sönmez, 2003) there is a finite set of

students, I, and a finite set of schools, A. Each school a ∈ A has a finite number of

available seats. Let qa be the capacity of school a and q = (qa)a∈A be the capacity

vector. Let ∅ denote the option of being unassigned. Each student has strict preferences

(complete, transitive, and antisymmetric relations) over all schools and being unassigned.

We denote the preferences of student i ∈ I by Pi and the preference profile of all students

by P = (Pi)i∈I . For each i ∈ I, let Ri denote the at-least-as-good-as relation associated

with Pi. Let P be the set of all possible (strict) rankings over A ∪ {∅}. Each school has a

strict priority order (complete, transitive, and antisymmetric relations) over all students.

We denote the priority order of school a ∈ A by �a and the priority profile of all schools by

�= (�a)a∈A. Throughout the paper we fix the set of students, I, the set of schools, A, the

capacity vector, q, and the priority profile, �.14 We represent a problem by the preference

profile P .

A matching µ : I → A∪ {∅} is a function such that the number of students assigned to a

school does not exceed its capacity. LetM be the set of all matchings. Given matching µ,

we denote the assignment of student i and the set of students assigned to school a by µi

and µa, respectively. Next, we define the properties of a matching for a given problem P .

A matching µ ∈M Pareto dominates another matching ν ∈M if µiRiνi for each student

i ∈ I and µjPjνj for at least one student j ∈ I. A matching µ is Pareto efficient if there

does not exist another matching ν ∈ M which Pareto dominates µ. Given µ, ν ∈ M, we

write µRν if for every student i ∈ I, µiRiνi.

A matching µ is non-wasteful if there does not exist a student-school pair (i, a) such

that |µa| < qa and aPiµi. A matching µ is individually rational if µiRi∅ for all i ∈ I.

A matching µ is fair if there does not exist a student-school pair (i, a) where aPiµi and

14For some results, we restrict the capacity of each school to one. We will make it clear when the capacities

are restricted.
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i �a j for some j ∈ µa. A matching is stable if it is non-wasteful, individually rational,

and fair. A stable matching µ is the student-optimal stable matching (SOSM) if it

Pareto dominates any other stable matching.

A mechanism Φ : P |I| → M is a function that selects a matching for each problem

P ∈ P |I|.15 The matching selected by mechanism Φ for problem P is denoted by Φ(P ) and

the assignment of each student i ∈ I and the set of students assigned to each school a ∈ A

are denoted by Φi(P ) and Φa(P ), respectively.

A mechanism Φ is Pareto efficient (stable) if for any problem P its outcome Φ(P ) is

Pareto efficient (stable) under problem P .

A mechanism Φ is strategy-proof if any student i ∈ I cannot benefit from misreporting

her preferences. Formally, Φ is strategy-proof if there does not exist a problem P , a student

i, and a preference order P ′i , such that Φi(P
′
i , P−i)PiΦi(P ) where P−i = (Pj)j∈I\{i}. A

mechanism Ψ is manipulable if it is not strategy-proof.

The student-proposing version of DA is defined as follows.16 In the first round, each student

proposes to her most preferred option in A∪{∅}. Each school tentatively accepts applicants

up to its capacity and rejects the lowest priority applicants above its capacity. In every

subsequent round, each student proposes to her most preferred option in A∪ {∅} that has

not already rejected her. Each school tentatively accepts the highest priority applicants up

to its capacity and rejects all others. The mechanism terminates when there are no new

rejections and tentative assignments are made final. DA was first introduced in Gale and

Shapley (1962). Roth and Sotomayor (1990) is an excellent resource on the properties of

DA.

Each problem P ∈ P |I| and mechanism Φ induce a game. Unless it is otherwise specified,

the preference profile P will always refer to the students’ true preferences. For expositional

15We only consider direct mechanisms in this paper.
16In Appendix A, we provide the definitions of the other mechanisms including TTC, the Boston Mech-

anism (BM), EADAM, and Deferred Acceptance plus Top Trading Cycles (DA+TTC).
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convenience, we will refer to the game induced by P and Φ as the Φ game. For each

student the strategy space is composed of the strict preference orders over A∪{∅}, i.e., P.

Then, P |I| is the set of all possible strategy profiles. Let P̃i be the strategy of student i

under strategy profile P̃ ∈ P |I|. We consider the complete information environment such

that preferences and priorities of all students are commonly known.17 For a given strategy

profile P̃ the outcome of the Φ game is the matching Φ(P̃ ). Under Φ game, we say strategy

P̃i weakly dominates strategy P̂i if Φi(P̃i, P̄−i)RiΦi(P̂i, P̄−i) for all P̄−i ∈ P |I|−1 and

Φi(P̃i, P
′
−i)PiΦi(P̂i, P

′
−i) for some P ′−i ∈ P |I|−1. Strategy P̃i is a weakly undominated

strategy for i ∈ I if there does not exist a strategy P̂i such that P̂i weakly dominates P̃i.

Strategy P̃i is a weakly dominant strategy for i ∈ I if it weakly dominates any other

strategy P̂i. A strategy profile P̃ ∈ P |I| is a weakly undominated strategy profile if

for every i ∈ I, P̃i is a weakly undominated strategy.

Under Φ game a strategy profile P̃ ∈ P |I| is a Nash equilibrium (NE) if there does

not exist a student i ∈ I and strategy P̂i such that Φi(P̂i, P̃−i)PiΦi(P̃ ). A NE P̃ ∈ P |I|

is a weakly undominated NE if P̃ is a weakly undominated strategy profile. We say a

matching µ is an equilibrium assignment for mechanism Φ if there exists a NE P̃ ∈ P |I|

under Φ game such that Φ(P̃ ) = µ. Similarly, a matching µ is an weakly undominated

equilibrium assignment for mechanism Φ if there exists a weakly undominated NE

P̃ ∈ P |I| under Φ game such that Φ(P̃ ) = µ. In the rest of the paper whenever we say

equilibrium and weakly undominated equilibrium we mean NE and weakly undominated

NE, respectively.

Iterated elimination of weakly dominated strategies is the standard process of

removing weakly dominated strategies, one by one, until no weakly dominated strategies

remain. See, for example, Mas-Colell et al. (1995).

17Ergin and Sönmez (2006), Pathak and Sönmez (2008) and Haeringer and Klijn (2009) also assume

complete information.
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4 Results

We wish to compare the weakly undominated equilibrium assignments for a mechanism Φ

to what the assignment would have been under DA under the true preferences. Note that

since truthful revelation of preferences is a weakly dominant strategy under DA, for any

problem P ∈ P |I|, DA(P ) is the unique weakly undominated equilibrium assignment of

the DA game.

Definition 1. A mechanism Φ Pareto dominates DA in equilibrium if for every

problem P ∈ P |I|, under Φ game there exists a weakly undominated equilibrium P̃ such

that Φ(P̃ ) R DA(P ), and for some problem P ′ ∈ P |I|, there exists a weakly undominated

equilibrium P̂ such that Φ(P̂ ) Pareto dominates DA(P ′) according to P ′.18

If Φ Pareto dominates DA in equilibrium, this does not necessarily make Φ a superior

mechanism. For some problems, mechanism Φ may have equilibrium assignments that are

Pareto dominated by the DA assignment. However, it can be interpreted that in the best

case scenario, Φ is a superior mechanism to DA.

There are mechanisms that Pareto improve DA relative to the submitted preferences, for

instance, both Kesten’s EADAM and DA + TTC. We define a mechanism Φ as improving

DA directly if for any problem P , Φ(P )R DA(P ) and for some problem P ′, Φ(P ′) Pareto

dominates DA(P ′). While it is known that no Pareto efficient mechanism that improves DA

directly can be strategy-proof, little is known about the equilibrium properties of any such

manipulable mechanism. Our first result demonstrates that no Pareto efficient mechanism

that improves DA directly can Pareto dominate DA in equilibrium. Directly improving

DA creates perverse incentives.

18More generally, we can compare any two mechanisms this way. For a mechanism Φ and problem P ,

let ΛΦ(P ) denote the set of weakly undominated equilibrium assignments. We say a mechanism Φ Pareto

dominates mechanism Ψ in equilibrium if for every problem P and for every µ ∈ ΛΨ(P ), either

µ ∈ ΛΦ(P ) or there exists ν ∈ ΛΦ(P ) such that ν Pareto dominates µ according to P . Moreover, we require

that for some problem P̄ , if µ ∈ ΛΨ(P̄ ), then there exists ν ∈ ΛΦ(P̄ ) such that ν Pareto dominates µ

according to P̄ . Note that, ΛDA(P ) = DA(P ) for any problem P .
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Theorem 1. Let Φ be a Pareto efficient mechanism that improves DA directly. Mechanism

Φ does not Pareto dominate DA in equilibrium.19

Proof. Let Φ be any mechanism that Pareto improves DA directly. Consider a problem

with three students, I = {i, j, k}, three schools each with unit capacity, A = {a, b, c}, and

the following preferences, P , and priorities, �:

Pi Pj Pk �a �b �c
a a b k j i

c b c i k k

b c a j i j

∅ ∅ ∅

We will prove below that the only weakly undominated strategies for j are Pj : a, b, c, ∅

and P̂j : a, b, ∅, c. For now, we assume j submits her true preferences Pj (an analogous

argument shows the same conclusion holds if she submits P̂j). Since j has the highest

priority at b, for any (P ′i , P
′
k) ∈ P2,

DAj(P
′
i , Pj , P

′
k) ∈ {a, b} . (1)

Since Φ improves DA directly, Φj(P
′
i , Pj , P

′
k) ∈ {a, b}. In particular, if DAj(P

′
i , Pj , P

′
k) = a,

then Φj(P
′
i , Pj , P

′
k) = a. For student k, consider the preference profile P ∗k : b, a, c, ∅.

Student k has the highest priority at a, therefore DAk(P
′
i , Pj , P

∗
k ) ∈ {a, b} for any P ′i ∈ P.

Therefore, for any P ′i ∈ P,20 DA(P ′i , Pj , P
∗
k ) is one of the following assignments:

µ =

i j k

c a b

 µ′ =

i j k

c b a


19More generally, this is true for any mechanism that improves DA whenever the DA outcome is Pareto

inefficient and selects the DA outcome whenever the DA outcome is Pareto efficient.
20More precisely, for any P ′i such that cP ′i∅. However, an identical argument shows that if i declares c

unacceptable, then Φ must assign i, j, and k to ∅, a, and b, respectively. This cannot be an equilibrium

under the Φ game, since i can get c by ranking it above ∅.
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IfDA(P ′i , Pj , P
∗
k ) = µ, then theDA assignment is Pareto efficient and therefore Φ(P ′i , Pj , P

∗
k ) =

µ. If DA(P ′i , Pj , P
∗
k ) = µ′, then DA selects a Pareto inefficient matching under problem

(P ′i , Pj , P
∗
k ). Since µ is the only possible Pareto improvement of µ′, Φ(P ′i , Pj , P

∗
k ) = µ.

This establishes two things. First, (Pi, Pj , P
∗
k ) is a NE under Φ game since i’s report is

irrelevant and j and k receive their favorite school.21 Second, if P ∗ is a NE under Φ game

and P ∗j = Pj , then Φ(P ∗) = µ or else k would have an incentive to deviate. However,

DA(P ) (i.e. under true preferences) is the following assignment:

ν =

i j k

a b c

 .

Since ν is Pareto efficient (relative to P ), Φ(P ) = ν. Therefore, under any NE P ∗ where

P ∗j = Pj , DAi(P ) Pi Φi(P
∗). Note that it is irrelevant whether or not j declares c

acceptable. Therefore, if P̂j := a, b, ∅, c then it is also true that under any NE P ∗ where

P ∗j = P̂j , DAi(P ) Pi Φi(P
∗). We conclude the proof by demonstrating that Pj weakly

dominates all strategies for j (other than P̂j := a, b, ∅, c).

Recall that, for any strategies (P ′i , P
′
k) ∈ P2, DAj(P

′
i , Pj , P

′
k) ∈ {a, b} (Eq. 1). Consider

any preference P ′j ∈ P where b is ranked higher than a. Again, since j has the highest

priority at b, for any (P ′i , P
′
k) ∈ P2, DAj(P

′
i , P

′
j , P

′
k) is either b or a school she ranks higher

(under P ′j). In particular, DAj(P
′
i , P

′
j , P

′
k) 6= a. Since Φ(P ′i , P

′
j , P

′
k) is a Pareto improve-

ment of DA(P ′i , P
′
j , P

′
k) (relative to (P ′i , P

′
j , P

′
k)), Φj(P

′
i , P

′
j , P

′
k) 6= a. Therefore, for any

(P ′i , P
′
k) ∈ P2, Φj(P

′
i , Pj , P

′
k)RjΦj(P

′
i , P

′
j , P

′
k). Let (P̃i, P̃k) be the degenerate preference

profile where both i and k declare no schools to be acceptable. Since for any (P ′i , P
′
k) ∈ P2,

Φj(P
′
i , Pj , P

′
k)RjΦj(P

′
i , P

′
j , P

′
k), and for (P̃i, P̃k) Φj(P̃i, Pj , P̃k) = a but Φj(P̃i, P

′
j , P̃k) 6= a,

we conclude that Pj weakly dominates any P ′j where b is ranked ahead of a.

Next, we show that Pj weakly dominates P ′j := a, c, b, ∅. Fix any (P ′i , P
′
k) ∈ P2. Suppose

DAj(P
′
i , P

′
j , P

′
k) = a. Then DAj(P

′
i , Pj , P

′
k) = a (DA is strategy-proof) and consequently

Φj(P
′
i , Pj , P

′
k) = Φj(P

′
i , P

′
j , P

′
k) = a. Now suppose DAj(P

′
i , P

′
j , P

′
k) = c. Since j has the

21It is straightforward (but tedious) to verify that Pi, Pj , and P ∗k are all weakly undominated strategies.
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lowest priority at c, neither i nor k prefers c (under submitted preferences (P ′i , P
′
j , P

′
k))

to her assignment (otherwise they would have justified envy). Consequently, j cannot be

part of a Pareto improvement, and therefore, Φj(P
′
i , P

′
j , P

′
k) = c. Since Φj(P

′
i , Pj , P

′
k) ∈

{a, b}, Φj(P
′
i , Pj , P

′
k) Pj Φj(P

′
i , P

′
j , P

′
k). The case when DAj(P

′
i , P

′
j , P

′
k) = b is similar.

Student j has been rejected by both a and c; therefore, both schools must be “holding

onto” a student. Since there are only two students other than j, when j applies to b it

does not reject a student. In particular, by revealed preference, neither i nor k prefers b

(according to submitted preferences (P ′i , P
′
j , P

′
k)) to their assignment under DA(P ′i , P

′
j , P

′
k).

Consequently, Φj(P
′
i , P

′
j , P

′
k) = b and therefore, Φj(P

′
i , Pj , P

′
k)RjΦj(P

′
i , P

′
j , P

′
k). Therefore,

we conclude that for any (P ′i , P
′
k) ∈ P2, Φj(P

′
i , Pj , P

′
k)RjΦj(P

′
i , P

′
j , P

′
k). Now suppose

P ′i := b, c, a, ∅ and P ′k := a, b, c, ∅. Then Φj(P
′
i , P

′
j , P

′
k) = c but Φj(P

′
i , Pj , P

′
k) = b. This

demonstrates that Pj weakly dominates P ′j := a, c, b, ∅. A similar argument shows that Pj

weakly dominates P ′j := c, a, b, ∅. It is straightforward to verify that j cannot benefit from

declaring one or more schools unacceptable. Therefore, Pj weakly dominates any strategy

(other than P̂j := a, b, ∅, c). Therefore, in any undominated equilibrium, j plays Pj or

P̂j .

To the best of our knowledge, ours is the first paper to consider equilibrium analysis

of mechanisms that Pareto improve DA. Prior work had considered only strategy-proof

mechanisms. Hence, Theorem 1 is a far more general (and does not follow) from any

previously known results. The two most prominent ways of Pareto improving DA are

Kesten’s EADAM and DA+TTC. Immediate corollaries of Theorem 1 state that neither

of these mechanisms dominate DA in equilibrium.

Corollary 1. DA+TTC does not Pareto dominate DA in equilibrium.

Corollary 2. EADAM with all students consenting does not Pareto dominate DA in equi-

librium.22

22Theorem 1 actually demonstrates something stronger. So long as at least one student consents, EADAM

does not Pareto dominate DA in equilibrium. The proof of Theorem 1 only relies on the one student i

consenting. It is interesting to contrast this result with Kesten’s Proposition 3, which says that no student
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With some restrictions on the preference domain, Kesten and Kurino (2013) introduce

a strategy-proof mechanism which Pareto improves DA in certain problems and selects

DA’s outcome in all other problems. This does not contradict our Theorem 1 for two

reasons. First, Theorem 1 applies to mechanisms that Pareto improve DA’s outcome

whenever possible and this is not satisfied by the mechanism introduced in Kesten and

Kurino (2013). Second, Kesten and Kurino (2013) require students to have at least two

acceptable schools, and we make no restriction on preferences.

Next, we consider running DA but only using each student’s top two choices.23 We demon-

strate that this mechanism Pareto dominates DA in equilibrium. For tractability, we

assume that each school has a capacity of one. Kesten (2010) identifies the source of DA’s

inefficiency. A student i can temporarily hold a seat at a school a, cause a student j to

be rejected from a, but then later be rejected from a in favor of a higher ranked student.

Kesten calls such a student an interrupter. Since i does not benefit and j is potentially

harmed, this can lead to an inefficient assignment. An interrupter envies another student’s

assignment but she herself cannot benefit from a change to the assignment. We will refer

to an objection by an interrupter as a petty objection.24

However, in order to reduce the number of interrupters, we must make it costly for a

student to apply to a school. Under DA, it is costless to apply to a school. One way to do

this is by limiting the number of schools a student is allowed to apply to. This gives the

student the ability to express the school she “deserves” (her DA assignment) and a school

she prefers, but it forces her to be judicious about which schools she applies to. We define

the 2-school DA as follows. For any problem P , the DA is run on the top two choices

according to P . That is, if a student i is rejected by her top-two choices, then we do not

is harmed by consenting. This is true so long as all other students submit the same preferences. But this

demonstrates that a student can be harmed by consenting in equilibrium.
23This can be interpreted as allowing students to rank at most two schools as acceptable.
24See Morrill (2016) for a full study of petty objections. Petty objections are closely related to λ-equity,

introduced by Alcade and Romero-Medina (2015), reasonable stability, introduced by Cantala and Pápai

(2015), and partial fairness, introduced by Dur et al. (2015).
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allow her to apply her third choice and instead assign her to ∅.

Under 2-school DA and under DA, a student does not benefit from being an interrupter.

However, under 2-school DA it is costly for a student to apply to a school where she is an

interrupter, since she is limited in the number of proposals she may make. Since there is

a cost but no benefit, in equilibrium a student does not apply to a school where she is an

interrupter.25

Theorem 2. When each school has a capacity of one, 2-school DA Pareto dominates DA

in equilibrium.

Proof. Consider a problem P . Let µ = DA(P ). For any preference profile P ′, we define

2DA(P ′) to be the matching selected by 2-school DA. For any P̄i ∈ P, let P̄i(k) be the

kth school, possibly ∅, under P̄i. Given the DA assignment µ, we define P ′i to be a µ-

strategy for student i as follows: if µi = Pi(1) or µi = ∅, then P ′i = Pi; otherwise,

P ′i (1) Pi µi and P ′i (2) = µi (i ranks her DA assignment second and a school she prefers

first). We will construct a NE under 2-school DA where each student plays a µ-strategy.

It is straightforward to verify the following fact.

Fact 1: Consider any preference profile P ′ = (P ′i )i∈I such that for each i ∈ I P ′i is a

µ-strategy. Then 2DA(P ′) R µ. Moreover, 2DAj(P
′) = ∅ if and only if µj = ∅.

Under 2-school DA, we first establish that submitting true preferences is a best response

for students unassigned under µ when all other students play µ-strategy.

Fact 2: Suppose µi = ∅ and for each j 6= i that P ′j is a µ-strategy. Then Pi is a best

response to P ′−i = (P ′j)j 6=i under 2-school DA.

This argument is repeated in the proof, so we emphasize the intuition here. Let ν =

2DA(Pi, P
′
−i). Note that (Pi, P

′
−i) is a µ-strategy profile. There may be a student j such

that νj Pi νi and where i �νj j. But there is no preference i can submit that will result in

25The exception to this is if her DA assignment is her second favorite school and she is an interrupter at

her favorite school. In equilibrium, she applies to her two favorite schools.
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her being assigned to νj when others play P ′−i. If i applies to νj under 2-school DA, then

j will be rejected. Since each student (other than i) is playing a µ-strategy, by Fact 1,

this initiates a rejection chain where each rejected student applies to her DA assignment,

causing a new student to be rejected. This can only conclude with i being rejected from

νj by the student assigned to νj under µ.

We construct a weakly undominated NE iteratively. We define P 0 as follows:

P 0
i =


Pi µi = ∅

Pi µi = Pi(1)

Pi(1), µi, . . . otherwise

where it is understood that Pi(1), µi, . . . indicates that i ranks Pi(1) first, µi second, and

ranks the remaining schools according to her true preferences Pi. Let P 0 = (P 0
i )i∈I and

ν0 = 2DA(P 0). Since for each student i P 0
i is a µ-strategy, by Fact 1, ν0 R µ.

In order to identify which students have an incentive to deviate, we construct a directed

graph as follows:

• Each student i and each school a is a vertex.

• If µa 6= ∅, then draw a directed edge from a to µa.

• Draw a directed edge from student i to Pi(1) = a if i �a j for every student j such

that either (i) j ranks a first; or (ii) µj = ∅ and j ranks a first or second.

Call this directed graph G0. Note that each school points to at most one student, and each

student points to at most one school. Furthermore, by construction, each school is pointed

to by at most one student. Therefore, the graph partitions the students and schools into

cycles, paths, or single nodes. A student i can be a single node only if µi = ∅. Since µ

is non-wasteful, if µa = ∅, then a will be a single node. It is straightforward to verify the

following properties of ν0: (i) a student in a cycle is assigned to the school she is pointing
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to (a Pareto improvement of µ if the cycle has more than one student); (ii) a student in a

path is assigned to the school pointing to her (her assignment under µ); and (iii) students

that are single nodes remain unassigned (these are students who are unassigned by µ).26

We now define the set of schools that are achievable for a student i under graph G0.

Intuitively, a school a is achievable for i if i would form a cycle by ranking a first fixing all

the other strategies under P 0. School a is also achievable if µa = ∅, but since no student

desires such a school, it is not relevant for any equilibrium. For expositional convenience, we

do not include these schools in the definition of achievable. Mathematically, a is achievable

for a student i in G0 if there is a path from a to i and i �a j for every student j that either

ranks a first or leave µj = ∅ and j ranks a first or second under P 0
j . By our definition,

unassigned students under µ do not have any achievable school.

If there is no path from a to i under P 0, then there is no strategy P ′i that i can submit

that will result in 2-school DA assigning i to a when any other student j plays P 0
j . The

logic is the same as for Fact 2. If i causes a student to be rejected from a, it will initiate a

rejection chain that eventually causes i to also be rejected from a. Hence, P 0 constitutes

an equilibrium if no student i prefers an achievable school a to ν0i . If a student is in a cycle

under G0, then she is assigned to her top choice under P at 2DA(P 0). Hence, she cannot

have a profitable deviation.

If there is a student with a profitable deviation under G0, choose one at random and label

her i1. Label i1’s favorite achievable school a1. Construct P 1
i1

as ranking a1 first, µi1 second,

and the remaining schools according to her true preferences. For all students j 6= i1, set

P 1
j = P 0

j , and let G1 be the directed graph induced by preferences P 1 as described for G0.

There are potentially several ways in which G1 might differ from G0. First, i1 is now part

of a cycle which we label C1. Second, consider the case where i1 was pointing to a school

a under G0. At a minimum, i1 is no longer part of this path. But if other students rank a

first (under P 1) then there are new students and schools connected to a.

26Not all unassigned students are nodes. They may point to some schools.
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If P 1 is an equilibrium, then we stop. If not, then we randomly choose a student i2 with a

profitable deviation (note that i1 6= i2 as i1 changed to her best profitable deviation and no

other student changed her report) and let a2 be her favorite achievable school under G1.

Construct P 2
i2

as ranking a2 first, µi2 second, and all remaining schools according to her

true preferences. For all students j 6= i2, set P 2
j = P 1

j , and let G2 be the directed graph

induced by preferences P 2. Student i2 is not part of C1 since these students (other than

i1) are already getting their favorite school under P . Label the cycle i2 creates C2.

We first observe that it is possible for i1 to have a new profitable deviation under P 2.

Since i2 has changed her report, there are potentially more schools that i1 is able to form

a cycle with. Student i1 is currently part of cycle C1. Consider the case where i1 ranks

ā first (under P 1
i1

). Student i1 is currently keeping any other student from pointing to ā.

However, if i1 were to change her preferences, then a new student is potentially able to

point to ā. This means that i1 may be able to change her report and form a new cycle.

However, a key point is this could only increase the length of the path pointing to i1, and

importantly, the new cycle i1 forms is a superset of the original cycle C1. Therefore, we let

i1 change the school she is ranking at the top if she wants. Relabel this cycle, if there is

one, as C1. Moreover, every student in C1 other than i1 receives their favorite assignment.

Furthermore, note that even if C1 did change, it does not intersect with C2. Since C2 is

a cycle, it is not part of any path to i1. In addition, i1’s deviation cannot change i2’s

achievable set of schools.

If this is an equilibrium, then we stop. If not, then we select a third student with a

profitable deviation, i3. Since i1 and i2 do not have any further deviations, i3 6∈ {i1, i2}.

Since the students in C1 ∪ C2 \ {i1, i2} all get their first choice, i3 6∈ C1 ∪ C2. Label the

cycle i3 creates C3. The key points are that this cycle cannot intersect with C1 or C2 (each

school points to one student and a student points to at most one school). Either i1 or i2

may want to change her top-ranked school, but this can only expand the cycle she is in.

Since there is no path between i1 and i2, expanding either cycle would not effect the other.

Finally, after i1 and i2 expand their cycle (if they want), it remains that i1, i2, and i3 have
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no profitable deviations and all other students in C1, C2, and C3 get their top choice.

Due to the finiteness of A and I, this process must eventually terminate, and when it does,

no student has a profitable deviation. Hence, we have constructed a NE. In our construc-

tion, all students play a µ-strategy. Therefore, by Fact 1, the equilibrium assignment we

have found weakly Pareto dominates µ.

In Appendix C, we show that any µ−strategy profile is a weakly undominated strategy

profile.

In Example 1, we provide a problem and a weakly undominated equilibrium assignment

under 2-school DA that Pareto dominates the DA assignment.

Example 1. There are three schools, A = {a, b, c}, each with a capacity of one; three

students, I = {1, 2, 3}; and preferences and priorities as follows.

P1 P2 P3 �a �b �c
a b b 2 1 3

b a a 3 2 2

c c c 1 3 1

∅ ∅ ∅

Note that DA assigns 1 to b, 2 to a, and 3 to c. Under 2-school DA, the following strategy

profile is a weakly undominated NE: 1 submits P1; 2 submits P2; and 3 submits P ′3 : b, c, a, ∅.

This is the initial strategy profile under the equilibrium construction described in the proof

of Theorem 1. In the induced equilibrium assignment 1 is assigned to a, 2 is assigned to b,

and 3 is assigned to c. This equilibrium assignment Pareto dominates the DA assignment.

Due to the similarities between 2-school DA and the Shanghai mechanism (Chen and

Kesten, 2015),27 one can wonder whether the sets of weakly undominated equilibrium

27The formal definition of the Shanghai mechanism is given in Appendix B.
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assignments under these mechanisms coincide. In Appendix B, we provide an example

showing that they do not.

In general, the 2-school DA does not have a unique equilibrium and not all equilibria Pareto

dominate the DA assignment. In the following example we show that for some problem

P 2-school DA might have an equilbrium assignment which is worse than DA assignment

under problem P .

Example 2. There are three schools, A = {a, b, c}, each with a capacity of one; four

students, I = {1, 2, 3, 4}; and preferences and priorities as follows.

P1 P2 P3 P4 �a �b �c
a a a b 1 2 3

b c b c 2 3 2

c b c ∅ 3 1 1

∅ ∅ ∅ a 4 4 4

Note that DA assigns 1 to a, 2 to c, 3 to b, and 4 to ∅. Under 2-school DA, the following

strategy profile is a weakly undominated NE: 1 submits P1; 2 submits P ′2 : a, b, c, ∅; 3

submits P ′3 : a, c, b, ∅; and 4 submits P4. In the induced equilibrium assignment 1 is

assigned to a, 2 is assigned to b, 3 is assigned to c, and 4 is assigned to ∅. This equilibrium

assignment is Pareto dominated by the assignment of DA under true preferences.

However, our next result shows that in all equilibria that survive iterated elimination of

weakly dominated strategies no student receives worse than a fair assignment. Specifically,

each student receives either their school-proposing DA assignment28 or a school she strictly

prefers.

Theorem 3. For any problem P , let µ be an arbitrary equilibrium assignment of 2-school

DA that is induced by strategies surviving iterated elimination of weakly dominated strate-

28A formal definition of the school-proposing DA mechanism is given in Appendix A.
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gies. Under µ no student is assigned to a school worse than her assignment under school-

proposing DA.

Proof. Consider the first step of the school-proposing DA mechanism, and consider any

student i that gets multiple proposals.29 Let a be her favorite acceptable school that

proposes to her in the first step, and let b be any of her other proposals (in particular,

a Pi b). Note that she is one of the qa and qb highest ranked students at a and b, respectively.

Hence, under 2-school DA if she ever were to list either a (or b) as her top-two choices, she

will not be assigned to a school worse than a (or b) according to her submitted preferences.

A key point is that i does not play the following strategies: (1) ranking b first or (2) ranking

a school c that did not propose to i in the first step and b second. These strategies are

weakly dominated by (1) ranking a first and (2) ranking c first and a second, respectively.

A second point is that in any equilibrium assignment of 2-school DA, i will not be assigned

to a school worse than a.

For the inductive step, consider the kth step of the school-proposing DA mechanism. Con-

sider a student j who is holding onto a proposal from school a and has already rejected

school b. Our inductive hypothesis is that j does not rank b and does not rank another

school c /∈ {a, b} first and b second.30 In the kth step, consider any student i who has

received more than one proposal. Let a be her favorite of all such acceptable proposals and

let b be any other proposal. By the inductive hypothesis, in any equilibrium of 2-school

DA that survives iteratively eliminating weakly dominated strategies, no student who has

previously rejected either a or b ever lists a or b as her first choice nor does she rank it

second while not ranking the school she is not tentatively holding in step k− 1 (they have

a school that they strictly prefer and that they are sure to get into). Therefore, if i lists a

(b) as the first choice, she will be assigned to a (b). Similarly, if i lists another school c first

29We consider a version of the school-proposing DA in which the unassigned option proposes to all

students.
30Note that it cannot be a best response for her to list a and b but rank b ahead of a when all other

students play strategies that survive the iterated elimination of weakly dominated strategies.
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and lists a (b) as the second choice, she will be assigned to either c or a (b). Hence, ranking

b as the first choice and another school c /∈ {a, b} first and b second is weakly dominated

by ranking a first or c first and a second, respectively. Moreover, i is never assigned to a

school worse than she is holding onto in the kth step of the school-proposing DA mechanism

in any equilibrium assignment induced by strategies the survive the iterated elimination of

weakly dominated strategies.

Since this is true for any step k, in any equilibrium of 2-school DA that survives the iterated

elimination of weakly dominated strategies, no student is assigned to a worse school than

she receives under the school-proposing DA mechanism.

5 Conclusion

Fairness and strategy-proofness are highly desirable properties in a mechanism. However,

the most fundamental normative criterion in economics is Pareto efficiency. If it is possible

to make students better off without harming anyone, then we should. It is well known that

the DA mechanism makes Pareto inefficient assignments. However, in this paper, with

DA, we discover that it is possible to make a Pareto improving assignment ex-post. Since

any ex-post modification to the assignment inevitably changes the preference submission

strategy associated with DA, prior to the current paper it was unknown whether or not it

was possible to implement a Pareto improvement.

This paper demonstrates that it is indeed possible. Knowing that it is possible to imple-

ment an assignment that dominates the student-optimal fair assignment begs the following

question: how should we do so?
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Appendix A Definition of the Mechanisms

Boston Mechanism:

For a given problem P , BM mechanism selects its outcome through the following mecha-

nism:

Step 1: Each student applies to her most preferred school. Each school s accepts the best

students according to its priority list, up to qs, and rejects the rest.

Step k > 1: Each student rejected in Step k − 1 applies to her kth choice. Each school s

accepts the best students among the new applicants, up to the number of remaining seats,

and rejects the rest.

School-Proposing DA Mechanism:

For a given problem P , school-proposing DA mechanism selects its outcome through the

following mechanism:

Step 1: Each school s proposes to top qs students under �s. Each student i accepts the

best proposal it gets according to Pi, and rejects the rest.

Step k > 1: Each school s proposes to top qs students under �s who have not rejected it

yet. Each student i accepts the best proposal it gets according to Pi, and rejects the rest.

Top Trading Cycles Mechanism:

For a given problem P , TTC mechanism selects its outcome through the following mecha-

nism:

Step 0: Assign a counter to each school and set it equal to the quota of each school.

Step 1: Each student points to her most preferred school among those remaining. Each

remaining school points to the top-ranked student in its priority order. Due to the finiteness
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there is at least one cycle.31 Assign each student in a cycle to the school she points to and

remove her. The counter of each school in a cycle is reduced by one and if it reduces to

zero, the school is removed.

Step k > 1: Each student points to her most preferred school among the remaining ones.

Each remaining school points to the student with the highest priority among the remaining

ones. There is at least one cycle. Assign each student in a cycle to the school she points to

and remove her. The counter of each school in a cycle is reduced by one and if it reduces

to zero, the school is also removed.

Deferred Acceptance-Top Trading Cycles Mechanism

For a given problem P , DA-TTC mechanism selects its outcome through the following

mechanism:

Round DA: Run the DA mechanism. Update the priorities by giving the highest priorities

for each school to the students assigned to it.

Round TTC: Run the TTC mechanism by using the preference profile and updated

priorities.

Efficiency-Adjusted Deferred Acceptance Mechanism:

In order to define the mechanism selecting the outcome of EADAM, we first present a

notion that we use in the definition. If student i is tentatively accepted by school s at some

step t and is rejected by s in a later step t′ of DA and if there exists another student j who

is rejected by s in step t′′ ∈ {t, t + 1, ..., t′ − 1}, then i is called an interrupter for s and

(i, s) is called an interrupting pair of step t′. Under EADAM, each student decides to

consent or not. For a given problem P and consent decisions, EADAM selects its outcome

through the following algorithm:

31A cycle is an ordered list of distinct schools and distinct students (s1, i1, s2, ..., sk, ik) where s1 points

to i1 , i1 points to s2 , ... , sk points to ik , ik points to s1 .
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Round 0: Run the DA mechanism.

Round k > 0: Find the last step of the DA run in Round k − 1 in which a consenting

interrupter is rejected from the school for which she is an interrupter. Identify all the

interrupting pairs of that step with consenting interrupters. For each identified interrupting

pair (i, s), remove s from the preferences of i without changing the relative order of the

other schools. Rerun the DA algorithm with the updated preference profile. If there are

no more consenting interrupters, stop.

Shanghai Mechanism

See Chen and Kesten (2016) for a full description of the Shanghai mechanism and it’s

properties. The Shanghai mechanism can be defined as iteratively repeating the 2-school

DA. Each student submits a ranking over all schools.

Round 1: Run 2-school DA with each student submitting her top two schools. Finalize

the assignments made in this round and adjust the school capacities accordingly.

Round k: Run 2-school DA with each student who has not already been assigned in a

previous round submitting her 2k − 1 and 2k favorite schools. Finalize the assignments

made in this round and adjust the school capacities accordingly.

The algorithm concludes when either all students have been assigned or else the remaining

students have been rejected by every school on their application list.

Appendix B Comparision Between Shanghai Mechanism and

2-School DA

We consider the problem presented in Example 1.

Recall that DA assigns 1 to b, 2 to a, and 3 to c. The Shanghai mechanism is defined in

Appendix A. Note that 1 and 2 are guaranteed their second choice, so their weakly dominant
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strategy under Shanghai is to submit their true preferences. Similarly, so long as 3 ranks

all three schools, she will be assigned to some school under Shanghai. As c is her least

preferred school, she cannot benefit (and may harm) herself by ranking c first or second.

Therefore, her only undominated strategy is to submit her true preferences or a, b, c, ∅.

Under either submission, student 3 is assigned to school c under Shanghai. Therefore,

under the Shanghai mechanism there exists a unique weakly undominated equilibrium

assignment which coincides with the (inefficient) DA assignment: 1 is assigned to b, 2 is

assigned to a, and 3 is assigned to c. On the other hand, under 2-school DA, the following

strategies constitute a weakly undominated equilibrium: 1 submits P1; 2 submits P2; and 3

submits b, c, a, ∅. In this equilibrium 1 is assigned to a, 2 is assigned to b, and 3 is assigned

to c.

Appendix C Omitted Results

Proposition 1. For any problem P , let µ = DA(P ) and P ′ = (P ′i )i∈I be a µ−strategy

profile. Then, P ′ is a weakly undominated strategy profile under 2-school DA.

Proof. First consider any student i such that P ′i = Pi. If i has the highest priority at P ′i (1) ∈

A or P ′i (1) = ∅, then 2DAi(P
′
i , P̃ ) = P ′i (1) = Pi(1) for any P̃ ∈ P |I|−1. Now suppose i does

not have the highest priority at P ′i (1) ∈ A and P ′i (1) 6= ∅. Let j ∈ I be the student with

the highest priority at P ′i (1). It is easy to verify that any strategy P̃i ∈ P in which Pi(1)

is not ranked first or Pi(1) and Pi(2) are ranked at the top cannot weakly dominate P ′i .

Let P̄i be a strategy profile such that P̄i(1) = Pi(1) and P̄i(2) 6= Pi(2). Consider a strategy

profile in which j ranks Pi(1) as their first choice and all other students rank ∅ as their

first choice. Denote this profile with P̄−i. Then, 2DAi(P
′
i , P̄−i) = Pi(2)Pi2DAi(P̄i, P̄−i).

That is, P ′i is a weakly undominated strategy.

Next consider any student i such that P ′i 6= Pi. Recall that P ′i (1)Piµi and P ′i (2) = µi. Since

µ is stable, all students assigned to a such that aPiµi under µ has higher priority than i
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at a and |µa| = qa. Let P̃i be a strategy such that either P ′i (1)PiP̃i(1) or P̃i(1)PiP
′
i (1) and

P̃i(2)PiP
′
i (1). Let P̃−i be a strategy profile such that all students except the ones in µP ′i (1)

rank their assignment under µ as the top choice and all students in µP ′i (1) rank ∅ as the

top choice. Then, 2DAi(P
′
i , P̃−i) = P ′i (1)Pi2DAi(P̃i, P̃−i). Let P̄i be a strategy such that

P̄i(1) = P ′i(1) and P̄i(2) 6= P ′i(2). Let P̄−i be a strategy profile such that all students rank

their assignment under µ as the top choice. Then, 2DAi(P
′
i , P̄−i) = µiPi2DAi(P̄i, P̄−i).

Let P ′i (1)PiP̂i(1). Let P̂−i be a strategy profile such that all students rank ∅ as their

top choice. Then, 2DAi(P
′
i , P̂−i) = P ′i (1)Pi2DAi(P̂i, P̂−i). Let P̌i(1)PiP

′
i (1)PiP̌i(2). Let

P̌−i be a strategy profile such that students assigned to school a with aPiP
′
i (1) under

µ rank a as their top choice and all other students rank ∅ as their top choice. Then,

2DAi(P
′
i , P̌−i) = P ′i (1)Pi2DAi(P̌i, P̂−i).
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